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a b s t r a c t 

The classical Density functional theory (DFT) has become a powerful tool to describe the microscopic 

structure of fluids as the radial distribution function. One of its particular capabilities is to express the 

thermodynamic properties of those fluids even under the influence of external potentials, such as fluid- 

solid interaction. However, good models for the Helmholtz free-energy functionals are necessary to im- 

prove the results. In this work, we present a self-consistent thermodynamic perturbation theory for the 

excess Helmholtz free-energy from the DFT applied to hard-core fluids. The new perturbation theory 

is solved self-consistently without any closure relation to solving the Ornstein-Zernike equation explic- 

itly. We compare the performance of our self-consistent perturbation theory with the results obtained 

with the well-known second-order Barker-Henderson perturbation theory for the hard-core Yukawa and 

square-well fluids. Moreover, we propose two versions of the DFT to describe the perturbative contribu- 

tion: one based on the weighted density approximation theory and another from a modified mean-field 

theory. The present results confirm the modified mean-field theory as a better option to calculate the 

thermodynamic and structural properties of hard-core fluids. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The classical Density Functional Theory (DFT) can express the 

hermodynamic properties and the microscopic structure of classi- 

al fluids simultaneously. All these phenomena are described from 

ust an excess Helmholtz free-energy model, even under the influ- 

nce of external potential [1,2] . 

The recent formulations of the classical DFT to modeling these 

roperties of inhomogeneous fluids are constructed from an excess 

elmholtz free-energy functional written as the sum of a repul- 

ive hard-core parcel and an attractive parcel. The repulsive con- 

ribution is well described by the modified fundamental measure 

heory (MFMT) [3,4] . However, the attractive contribution can be 

escribed by a density expansion [5] , or a perturbation theory 

6,7] , or simply by a mean-field theory (MFT) approximation [8,9] . 

hese various versions of DFT have predicted structural and in- 

erfacial properties for hard-sphere fluids [10–12] , the hard-core 

ukawa (YK) fluids [8,13,14] , the square-well (SW) fluids [15–17] , 

he Lennard-Jones (LJ) fluids [9] , and others. Besides, there are ex- 

ellent examples of successful application of DFT to confined fluids 

18–25] . 
∗ Corresponding author. 

E-mail addresses: tavares@eq.ufrj.br , ftavares@peq.coppe.ufrj.br (F.W. Tavares). 
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The MFT is computationally efficient but neglects structural cor- 

elations in the excess Helmholtz free energy functional. To correct 

his problem, the mainstream DFT formulations incorporate the di- 

ect correlation functions (DCF) due to the inter-particle interac- 

ions in the form of a Taylor expansion of the excess Helmholtz 

ree-energy around a reference fluid density. Various approximate 

orms of DCF have been obtained from the well-known Ornstein- 

ernike (OZ) equation. The OZ equation connects the direct cor- 

elation function c (2) (r) and the total correlation function h (r) = 

(r) + 1 , where g(r) is the radial distribution function (RDF). With 

he help of some approximate form of the closure relation, such 

s the mean spherical approximation (MSA) or hypernetted chain 

HNC) closures, the OZ equation can be solved analytically or nu- 

erically. For example, there are good results for the OZ solutions 

f SW fluids [26–28] or hard-core YK fluids [29–32] . 

The other attempts to DFT are based on perturbation theories 

f homogeneous fluids with the functional form described by a 

eighted density approximation (WDA) [33–35] . Undoubtedly, the 

est-known of these perturbation theories is the Barker-Henderson 

BH) perturbation theory for attractive hard-core fluids [36–38] . 

nother example of perturbation theory is the thermodynamic per- 

urbation theory (TPT) of Zhou [39] based on the numerical deriva- 

ive of the RDF. This theory has the same first-order approxima- 

ion, but it differs from the BH theory from the second-order term 

https://doi.org/10.1016/j.fluid.2021.113095
http://www.ScienceDirect.com
http://www.elsevier.com/locate/fluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fluid.2021.113095&domain=pdf
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nwards. The TPT presents a second-order correction superior to 

 macroscopic compressibility approximation of BH [40] and can 

e extended until the fifth-order counterpart [41] . Indeed, the TPT 

eeds the high derivatives of the radial distribution function ob- 

ained by some approximation of the OZ equation in the original 

ork. However, its DFT formulation uses the MSA second-order 

CF to construct the excess Helmholtz free energy density func- 

ional [41] . Both theories were applied successfully to describe SW 

uids, YK fluids, and others. 

The present work aims to develop a self-consistent perturba- 

ion theory from a DFT without using the OZ equation. In princi- 

le, we can use a first-order perturbative DFT to predict the radial 

istribution functions of the attractive potential perturbation con- 

ribution. The derivative of this RDF around the reference fluid is 

sed to construct the second-order term for the perturbative con- 

ribution. In this way, the RDF and DCF are obtained as an output 

f our perturbative DFT. The approach described below can predict 

hermodynamic properties and the microscopic structure of hard- 

ore YK and SW fluids. The functional form of the self-consistent 

erturbation theory free-energy can be build up from a modified 

DA or a modified MFT. Therefore, we present the two formula- 

ions and compare their results with those of Monte-Carlo (MC) 

imulation and Molecular Dynamics (MD) data. 

The structure of our work is as follows. In Section 2 we for- 

ulate the self-consistent perturbative density functional theory. 

he results of thermodynamic quantities, structural and interfacial 

roperties are presented in Section 3 . The summary and conclu- 

ions are given in Section 4 . 

. Theory 

.1. The classical density functional theory 

According to the DFT of classical fluids, the grand thermody- 

amic potential, �[ { ρ} ] , and the Helmholtz free-energy, F [ ρ(r)] ,

re functionals of the local density distribution ρ(r) . The grand po- 

ential functional �[ ρ(r)] is related to the free-energy functional 

 [ ρ(r)] by a thermodynamic relation given as 

[ ρ(r)] = F [ ρ(r)] + 

∫ 
d r [ V ext (r) − μ] ρ(r) (1) 

here μ is the chemical potential and V ext (r) is an external po- 

ential acting on the fluid. The grand potential �[ { ρ} ] has a mini-

um value when ρ(r) is the equilibrium density distribution, i.e. , 

he minimum value of �[ ρ(r)] is the equilibrium grand potential 

f the system. Then, the equilibrium density profile is calculated 

xtremizing the grand canonical potential, 

δ�[ ρ(r)] 

δρ(r) 

∣∣∣∣
μ,T 

= 

δF [ ρ(r)] 

δρ(r) 
+ V ext (r) − μ = 0 . (2) 

The Helmholtz free-energy functional is determined by the 

um 

 [ ρ(r)] = F id [ ρ(r)] + F exc [ ρ(r)] , (3) 

here the first parcel is the ideal gas contribution and the second 

arcel is the excess free-energy parcel. 

The ideal gas contribution is given analytically by the semi- 

lassical expression 

F id [ ρ(r)] = 

∫ 
d r ρ(r) 

[
ln (�3 ρ(r)) − 1 

]
(4) 

here β = 1 /k B T is the inverse of the thermal energy, T is the

emperature, and � = h (β/ 2 πm ) 1 / 2 is the de Broglie thermal 

avelength with k B , h , and m being the Boltzmann constant, the 

lanck constant, and the mass of the particle, respectively. 

The excess free-energy functional F exc [ ρ(r)] contains all the in- 

ormation about the interaction between particles given by the pair 
2 
otential V (r , r ′ ) . This functional defines the two-body density dis- 

ribution ρ(2) (r , r ′ ) through the functional derivative concerning 

he pair potential V (r , r ′ ) in the form 

δF exc [ ρ] 

δV (r , r ′ ) = 

1 

2 

ρ(2) (r , r ′ ) . (5) 

ecause the ρ(2) (r , r ′ ) is not known exactly for each pair potential

 (r , r ′ ) , the excess free-energy must be obtained by a thermody-

amic perturbation theory. The common perturbation theory is ob- 

ained by splitting the pair potential in a hard-core repulsive parcel 

 hs (r , r ′ ) and an effective attraction parcel αu (r , r ′ ) , such that 

 (r , r ′ , α) = v hs (r , r ′ ) + αu (r , r ′ ) for 0 ≤ α ≤ 1 , (6) 

here α is the coupling parameter of the pair potential. The v hs (r) 

s the hard-spheres pair potential defined as 

 hs (r) = 

{
∞ , r < σ, 

0 , r ≥ σ
(7) 

The potential defined in Eq. (6) specifies a thermodynamic path 

ntegration [42] in the form 

 exc [ ρ(r)] = F hs [ ρ(r)] + F pert [ ρ(r)] , (8) 

here the first parcel represents the hard-sphere repulsive contri- 

ution and the second parcel is the perturbative contribution due 

o the long-range attraction. 

The hard-spheres reference functional, F hs [ ρ(r)] , is described 

y the modified fundamental measure theory (MFMT) which pro- 

ides an accurate description of the fluid structures. In this work, 

e apply the White-Bear functional [12,43] for the hard-spheres 

elmholtz free-energy contribution as 

F hs [ ρ(r)] = 

∫ 
d r 
[ { n ξ (r) } ] (9) 

here the free-energy density function is given by 

[ { n ξ (r) } ] = −n 0 ln (1 − n 3 ) + 

n 1 n 2 − n v 1 · n v 2 

1 − n 3 

+ 

(
n 3 + (1 − n 3 ) 

2 ln (1 − n 3 ) 
)n 

3 
2 − 3 n 2 n v 2 · n v 2 

36 πn 

2 
3 
(1 − n 3 ) 2 

. (10) 

he weighted densities n (ξ ) (r) are defined as [3] 

 ξ (r) ≡
∫ 

d r ′ ρ(r ′ ) ω ξ (r − r ′ ) (11) 

here ξ = 0 , 1 , 2 , 3 , v 1 , and v 2 . The linearly independent weight

unctions are given by 

 3 (r) = 
(σ/ 2 − | r| ) , (12) 

 2 (r) = | ∇
(σ/ 2 − | r| ) | = δ(σ / 2 − | r| ) , (13) 

 v 2 (r) = ∇
(σ/ 2 − | r| ) = 

r 

r 
δ(σ / 2 − | r| ) , (14) 

nd the dependent weight functions are given by ω 0 (r) = 

 2 (r) /πσ 2 , ω 1 (r) = ω 2 (r ) / 2 πσ , and ω v 1 (r ) = ω v 2 (r) / 2 πσ . Here,

(r) is the Heaviside step function, and δ(r) is the Dirac 

elta distribution. For homogeneous fluids, the functional given 

y Eq. (9) simplifies to the Boublik-Mansoori-Carnahan-Starling- 

eland [44] equation of state for hard-sphere mixtures, or to the 

arnahan-Starling [45] for pure hard-sphere fluid is written as 

f hs (ρ) ≡ β
F hs (ρ) 

N 

= 

η(4 − 3 η) 

(1 − η) 2 
, (15) 

here η = (π/ 6) ρσ 3 is the packing fraction. 
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The perturbative functional, F pert [ ρ(r)] , can be written in the 

orm 

 pert [ ρ(r)] = 

1 

2 

∫ 
d r ρ(r ) 

∫ 
d r ′ ρ(r ′ ) u (r , r ′ ) 

∫ 1 

0 

d α g(| r − r ′ |;ρ, T , α) . (16) 

ith g(| r − r ′ |;ρ, T , α) being the pair-correlation function of the

uid with density ρ and temperature T . In fact, g(r;ρ, T , α = 0) 

eproduce exactly the reference fluid pair correlation function, in 

his case, g hs (r, ρ) . The main questions here are: how to obtain

 suitable approximation for the effective pair-correlation function 

(r;ρ, T , α) for non-zero values of α? what density value ρ must 

e used to calculate g(r;ρ, T , α) ? Moreover, g(r;ρ, T , α) must be 

on-analytical in most cases for the attractive potential, such that 

he perturbative functional has no analytical form. It is interest- 

ng to note that if g(r;ρ, T , α) ≈ 1 , the perturbative functional is

quivalent to the well-known mean-field theory or the structure- 

ess fluid approximation. 

The perturbative contribution, F pert [ ρ(r)] , can be obtained by 

he following perturbation theories of homogeneous fluid. The 

unctional is constructed using two following propose of functional 

orm to describe inhomogeneous fluids. 

.2. The perturbation theories for homogeneous fluids 

.2.1. Barker-Henderson second-order perturbation theory 

The Barker-Henderson second-order perturbation theory 

36,37] is an option to describe the perturbative free-energy 

unctional, Eq. (16) , for homogeneous fluids. This perturbation can 

e described in terms of an effective radial pair distribution, given 

y 

 1 

0 

d α g(r;ρ, T , α) ≈ g hs (r ;ρ) − 1 

2 

βu (r ) 
∂[ ρg hs (r ;ρ)] 

∂ p 
. (17) 

here g hs (r;ρ) is the hard-sphere radial distribution function. The 

rst parcel in Eq. (17) represents the first-order term of the per- 

urbation theory, and the second parcel represents the second- 

rder term on the local compressibility approximation (LCA). In 

he second-order theory, the local compressibility approximation 

rovides better accuracy than the macroscopic compressibility ap- 

roximation [46] . The derivative on the second-order term can be 

ritten as 

∂[ ρg hs (r;ρ)] 

∂ p 
= κhs (ρ) 

[
g hs (r;ρ) + ρ

∂g hs (r;ρ) 

∂ρ

]
, (18) 

here κhs (ρ) is the isothermal compressibility of the hard-sphere 

eference fluid, which is defined as 

hs (ρ) = 

(
∂ρ

∂ p 

)
hs 

= 

(1 − η) 4 

1 + 4 η + 4 η2 − 4 η3 + η4 
, (19) 

btained from the Carnahan-Starling equation of state. Conse- 

uently, the free-energy per particle of the perturbation contribu- 

ion f pert is written as 

f ( BH ) 
pert (ρ) = f (1) 

BH 
(ρ) + f (2) 

BH 
(ρ, T ) , (20) 

ith 

f (1) 
BH 

(ρ) = 2 πρ

∫ ∞ 

0 

d r r 2 u (r) g hs (r;ρ) , (21) 

f (2) 
BH 

(ρ, T ) = −πβρκhs (ρ) 
∂ 

∂ρ

[ 
ρ

∫ ∞ 

0 

d r r 2 [ u (r )] 2 g hs (r ;ρ) 
] 
. (22) 

The hard-sphere pair correlation is calculated following the pro- 

edure discussed in Section 3.3 . We construct a grid of density 
3 
ange of ρσ 3 ∈ [0 . 0 , 1 . 0] with the step of 0.02 and radial coordi-

ate range of r/σ ∈ [1 . 0 , 5 . 0] with a step of 0.01. With this, the

wo terms of the BH perturbation theory, Eqs. (21) and (22) , are 

nterpolated with a cubic Hermite spline and a bi-cubic Hermite 

pline, respectively. For more details about the interpolation, see 

ppendix C . 

.2.2. Self-consistent perturbation theory 

The self-consistent perturbation theory (SCPT) is presented here 

s another option to describe the perturbative free-energy, Eq. (16) , 

or homogeneous fluids. This theory is obtained by combining the 

adial distribution function calculated using the DFT with a ther- 

odynamic perturbation theory. The starting point is the thermo- 

ynamic perturbation theory known as coupling parameter series 

xpansion [39,47] . This perturbation theory is based on writing the 

adial distribution function integral, Eq. (16) , with the Taylor series 

y ∫ 1 
0 g ( r;ρ, T , α) d α

= 

1 
n ! 

∑ ∞ 

n =0 

∫ 1 
0 α

n ∂ 
n g ( r;ρ,T,α) 

∂αn 

∣∣
α=0 

d α , 
(23) 

here α is the coupling parameter, and the thermodynamic 

erivatives are taken around the reference fluid. Using this expan- 

ion to solve the perturbative integral Eq. (16) and retaining only 

he two first terms of that expansion, we get 

f ( SCPT ) 
pert (ρ, T ) = f (1) 

SCPT 
(ρ) + f (2) 

SCPT 
(ρ, T ) , (24) 

ith 

f (1) 
SCPT 

(ρ) = 2 πρ

∫ ∞ 

0 

d r r 2 u (r) g hs (r;ρ) , (25) 

f (2) 
SCPT 

(ρ, T ) = πρ

∫ ∞ 

0 

d r r 2 u (r) 
∂g(r;ρ, T , α) 

∂α

∣∣∣∣
α=0 

, (26) 

here the first term of this perturbation theory is exactly the first 

erm on the BH perturbation theory, Eq. (21) . The self-consistency 

f our theory is obtained by calculating the derivative of the radial 

istribution function ∂g(r;ρ, T , α) / ∂α| α=0 from the DFT. 

As well as in the BH perturbation theory, the two terms of the 

CPT perturbation theory, Eq. (25) and Eq. (26) , are interpolated 

ith a cubic Hermite spline and a bi-cubic Hermite spline, respec- 

ively. For more details, see Appendix C . 

.3. The DFT description of perturbative contribution for 

nhomogeneous fluids 

.3.1. The modified weighted density approximation 

The modified weighted density approximation (MWDA) 

33,35,48] of the excess free-energy function is written as 

 exc [ ρ(r)] = F hs [ ρ(r)] + F wda [ ρ(r)] , (27) 

ith just the perturbation contribution being written in the WDA 

ormalism. The basic idea of the WDA formalism is to make a free- 

nergy of homogeneous fluid valid in the functional form, applica- 

le to inhomogeneous systems. In this form, the perturbation free- 

nergy can be written as 

 wda [ ρ(r)] = 

∫ 
d r ρ(r) f pert ( ρ(r) , T ) , (28) 

here f pert ( ρ(r) , T ) is the perturbative contribution of the excess 

ree-energy per particle for a uniform fluid with density ρ(r) and 

emperature T . The weighted density ρ(r) is defined as 

(r) = 

∫ 
d r ′ ρ(r ′ ) ω(r − r ′ ) , (29) 

nd the normalized weight function [49] given by 

(r) = 

3 

4 πψ 

3 σ 3 

(ψσ − r) , (30) 



E.d.A. Soares, A.G. Barreto Jr. and F.W. Tavares Fluid Phase Equilibria 542–543 (2021) 113095 

Table 1 

The integral of the potential u (r) and the size parameter ψ

for the MWDA implementation of different potentials. 

Parameter Yukawa (YK) Square Well (SW) 

a a − 4 
3 
πεσ 3 

(
3(1+ λσ ) 
(λσ ) 2 

+ 1 
)

− 4 
3 
πεσ 3 λ3 

ψ
(

3(1+ λσ ) 
(λσ ) 2 

+ 1 
)1 / 3 

λ

a The potential integral is a = 

∫ ∞ 
0 d r 4 π r 2 u (r) . 
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here the parameter ψ scales the size of the averaging space. In 

his work, we define the size parameter ψ by the relation 

 = 

[ 
− 3 

4 πεσ 3 

∫ ∞ 

0 

d r 4 π r 2 u (r) 
] 1 / 3 

, (31) 

hich scales with the WCA energy volume of the perturbative po- 

ential. Here, ε is the energy scale of the perturbative potential, 

s shown in Table 1 for the YK and SW potentials. This definition 

f the ψ is different from the usual implementations of the WDA, 

ut already used in DFT versions as the PC-SAFT used to describe 

ennard-Jones inhomogeneous fluids [22] . 

From this functional form, the first-order direct correlation 

unction (DCF) is given by 

 

(1) 
exc (r, [ ρ]) = −β

δF exc [ ρ(r)] 

δρ(r) 
= c (1) 

hs 
(r) 

− β

∫ 
d r ′ ∂[ ρ(r ′ ) f pert ( ρ(r ′ ))] 

∂ ρ(r ′ ) ω(r − r ′ ) , (32) 

nd the second-order DCF in the form 

c ( 
2 ) 

exc 

(
r − r ′ , [ ρ] 

)
= −β ∂ 2 F exc [ ρ( r ) ] 

∂ ρ( r ) ∂ ρ( r ′ ) = c ( 
2 ) 

hs 

(
r − r ′ 

)
−β

∫ 
d r ′′ ∂ 

2 [ ρ( r ’ ’ ) f pert ( ρ( r ’ ’ ) ) ] 
∂ ρ( r ’ ’ ) 

2 ω 

(
r ′ − r ′′ 

)
ω 

(
r − r ′′ 

)
, 

(33) 

.e., the pair direct correlation function is the sum of the second- 

rder DCF inhomogeneous hard-sphere reference fluid and a term 

roportional to non-local perturbative compressibility. In the limit 

f a homogeneous fluid, the Eq. (33) reduces to 

c ( 
2 ) 

exc ( r, ρb ) = c ( 
2 ) 

hs ( r ) 

−β ∂ 2 ( ρb f pert ) 
∂ ρb 

2 
3 
π

(
r 3 − 3 r ( 2 ψσ ) 

2 + 2 ( 2 ψσ ) 
3 
)

( 2 ψσ − r ) . 

(34) 

This DCF gives the correct short-ranged correlations arising 

rom the repulsive interaction, but it does not provide the correct 

orm of the asymptotic tail correction of the correlations for any 

emperature. 

.3.2. The modified mean-field theory 

The modified mean-field approach (MMFT) consists of a mean- 

eld functional in addition to a correction term due to the corre- 

ation with the hard-core region. Therefore, the excess free-energy 

unctional is written as 

 exc [ ρ(r)] = F hs [ ρ(r)] + F mft [ ρ(r)] + F corr [ ρ(r)] , (35) 

here the mean-field theory term is 

 mft [ ρ(r)] = 

1 

2 

∫ 
d r ρ(r ) 

∫ 
d r ′ ρ(r ′ ) u (| r − r ′ | ) , (36) 

nd F corr is the correction term. This correction term is neces- 

ary to represent the correlation between the short-range repul- 

ive interactions and the long-range interactions. In this work, the 

elmholtz free-energy functional of the correlation effects is writ- 

en with the WDA formalism as 

 corr [ ρ(r)] = 

∫ 
d r ρ(r) f corr ( ρ(r) , T ) , (37) 

ith the weighted density ρ(r) defined by Eq. (29) and the nor- 

alized weight function given by Eq. (30) but now with the fixed 
4 
alue of ψ = 0 . 5 . This functional form was motivated by the work

f Yu [50] . 

The correlation parcel of the Helmholtz free-energy per particle 

s 

f corr (ρ, T ) = f (1) 
pert (ρ) + f (2) 

pert (ρ, T ) − 1 

2 

ρa, (38) 

here the last parcel represents the mean-field theory term with 

 being the integral of the potential u (r) , as shown in Table 1 . 

From this MMFT functional form, the first-order direct correla- 

ion function (DCF) is given by 

 

(1) 
exc (r, [ ρ]) = −β

δF exc [ ρ(r)] 

δρ(r) 

= c (1) 
hs 

(r, [ ρ]) − β

∫ 
d r ′ ρ(r ′ ) u (| r − r ′ | ) 

− β

∫ 
d r ′ ∂[ ρ(r ′′ ) f corr ( ρ(r ′′ ))] 

∂ ρ(r ′′ ) ω corr (r − r ′ ) , (39) 

nd the second-order DCF in the form 

c ( 
2 ) 

exc 

(
r − r ′ , [ ρ] 

)
= −β δ2 F exc [ ρ( r ) ] 

δρ( r ) δρ( r ′ ) 
= c ( 

2 ) 
hs 

(
r − r ′ , [ ρ] 

)
− βu ( | r − r ′ | ) 

−β
∫ 

d r ′′ ∂ 
2 [ ρ( r ’ ’ ) f corr ( ρ( r ’ ’ ) ) ] 

∂ ρ( r ’ ’ ) 
2 ω corr 

(
r ′ − r ′′ 

)
ω corr 

(
r − r ′′ 

)
, 

(40) 

.e., the pair direct correlation function is the sum of the second- 

rder DCF inhomogeneous hard-sphere reference fluid, a term pro- 

ortional to the attractive pair potential and the last term pro- 

ortional to the non-local correction of the compressibility. In the 

imit of a homogeneous fluid, the Eq. (40) reduces to 

c ( 
2 ) 

exc ( r, ρb ) = c ( 
2 ) 

hs ( r, ρb ) − βu ( r ) 

−β ∂ 2 [ ρb f corr ( ρb ,T ) ] 
∂ ρb 

2 
3 
π

(
r 3 − 3 rσ 2 + 2 σ 3 

)

( σ − r ) . 

(41) 

his DCF gives the short-ranged correlations arising from repulsive 

orces between the particles and the correct asymptotic tail correc- 

ion of the correlations on low-temperature limit i.e., c (2) ≈ −βu (r) 

s r → ∞ . This result is a combination, at some point, of the two

ow-density tail corrections presented by Lutsko in Ref. [51] . 

.4. The self-consistent algorithm 

The self-consistent procedure of our thermodinamic perturba- 

ion theory, SCPT, for both DFT approaches, is implemented follow- 

ng the steps: 

1. Calculate the f (1) 
SCPT 

(ρ) using the hard-sphere radial distribution 

function g hs (r;ρ) and for each effective potential αu (r) with 

α = [ −0 . 2 , −0 . 1 , 0 . 1 , 0 . 2] ; 

2. Construct the functional F pert [ ρ(r)] with just the first-order per- 

turbation term f (1) 
SCPT 

(ρ) ; 

3. Using the excess free-energy F exc [ ρ(r)] = F hs [ ρ(r)] + F pert [ ρ(r)] ,

calculate the radial distribution function g hs (r;ρ, T , α) for each 

previous α values; 

4. Calculate the f (2) 
SCPT 

(ρ) using the the numerical derivative of the 

radial distribution function ∂g(r;ρ, T , α) / ∂α
∣∣
α=0 

; 

5. Construct the functional F pert [ ρ(r)] with the two terms of the 

perturbation theory for the original potential u (r) ; 

The derivative ∂g(r;ρ, T , α) / ∂α
∣∣
α=0 

necessary to calculate the 

q. (26) is obtained by a fourth-order of accuracy central finite dif- 

erences method on α, in the form 

∂g(r;ρ, T , α) 

∂α

∣∣∣∣
α=0 

= 

g(r;ρ, T , −2�α) − 8 g(r;ρ, T , −�α) 

12�α

+ 

8 g(r;ρ, T , �α) − g(r;ρ, T , 2�α) 

12�α
(42) 

ith the step value �α = 0 . 1 . This step value is discussed in Ref.

52] and it seems to be suitable only for lower derivatives. 
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Fig. 1. (a) Phase diagrams in the ρ − T plane and (b) the saturation pressures of attractive hard-core Yukawa fluids with range λσ = 1 . 8 , 3 . 0 , 4 . 0 and 8.0. Open symbols: 

MC data from Ref. [59] . Dashed line: 2-order BH. Solid line: our SCPT. 
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. Results and Discussion 

We apply both perturbation theories to two cases of the attrac- 

ive potential u (r) . The Yukawa (YK) potential is represented by 

 (r) = 

{−ε, r < σ, 

−ε e −λ(r−σ ) 

r/σ , r ≥ σ
(43) 

nd the Square-Well (SW) potential is given by 

 (r) = 

{ −ε, r < σ, 

−ε, σ ≤ r < λσ, 

0 , r ≥ λσ
(44) 

here ε is the energy scale and λ is a range parameter for each 

otential. The hard-core values of both u (r) do not matter for the 

erturbation theories, but they are relevant to the MMFT imple- 

entation. 

In addition to the two perturbation theories, SCPT and BH, we 

ave two varieties of DFT implementations, MWDA and MMFT. To- 

alizing 4 different DFT models to validate. To quantitatively eval- 

ate the goodness of each presented model, we use the likelihood 

53] L defined in the form 

 = e −χ2 / 2 and χ2 = 

∑ 

i 

(y i − f (x i )) 
2 

(y max − y min ) 2 
, (45) 

ith χ2 being the normalized residual sum of squares [54] , { x i , y i }
epresenting the MC data and f (x i ) being the predicted value at x i 
y the model. The normalization factor 1 / (y max − y min ) 

2 defines a 

cale of the MC data because we do not have access to the MC data

ispersion. With this normalization we can compare χ2 for differ- 

nt types of MC data, as density, pressure and radial distribution 

unction. The total goodness of the model is defined as the sum of 

he goodness of each curve described by the model, χ2 
total 

= 

∑ 

n χ
2 
n . 

he closer to 1 is L , the better the model. Hence, the likelihood L
alue should only be compared between different models. 

.1. Fluid Phase Diagram and Thermodynamic quantities 

For the bulk homogeneous fluid phase, the grand potential per 

olume can be calculated as a simple function of the bulk density 

b in the form 

�

V 

= k B T 
[
ln (ρb �

3 ) − 1 

]
ρb + f hs (ρb ) ρb 

+ f pert (ρb ) ρb − μρb , (46) 
5 
here Eq. (15) gives the hard-sphere contribution, and the pertur- 

ation contribution is given by Eqs. (20) or (24) . In such a manner, 

he equilibrium condition, Eq. (2) , is reduced to 

∂(�/V ) 

∂ρb 

∣∣∣∣
μ,T 

= k B T ln (ρb �
3 ) + 

∂(ρb f hs ) 

∂ρb 

+ 

∂(ρb f pert ) 

∂ρb 

− μ = 0 , 

(47) 

hich is the thermodynamic relation between the free-energy 

erivative and the chemical potential. The coexistence between the 

apor and liquid phases is determined by the two densities ρv and 

l , which satisfies the Eq. (47) and the relation [�/V ] v = [�/V ] l for

he same chemical potential μ. In fact, this two relations reproduce 

he phase equilibria condition of 

v = μl and p v = p l . (48) 

he last condition in Eq. (48) is readily demonstrated by defini- 

ion �/V = −p for a homogeneous fluid. Finally, the equilibrium 

ondition is solved using a fast inertial relaxation engine (FIRE) 

55,56] implemented in Python by our group [57] and discussed 

n a submitted paper [58] . The algorithm convergence criterion is 

 

∂(�/V ) / ∂ρb | ≤ atol = 10 −7 . 

For the hard-core YK fluid, Fig. 1 presents the vapor-liquid coex- 

stence curves and the saturation pressures obtained with the BH 

erturbation theory and SCPT for λσ = 1 . 8 , 3.0, and 4.0. The SCPT

redicts the liquid coexistence density with excellent performance 

hen compared with the Monte Carlo (MC) simulation data from 

ef. [59] . The improvement in the likelihood to describe the MC 

ata is statistically insignificant. However, the saturation pressures 

re better predicted by the SCPT, when compared to the BH per- 

urbation theory, an improvement of almost 3% on the likelihood 

o represent the MC data, as shown in Table 2 . 

For the SW fluid, Fig. 2 presents the vapor-liquid coexistence 

urves and the saturation pressures obtained with the BH pertur- 

ation theory and SCPT for λσ = 1 . 5 , 1.75, and 2.0. The SCPT pre-

icts the liquid coexistence line and the saturation pressure better 

han the BH perturbation theory when compared to the MC data 

rom Ref. [60] . The total likelihood of SCPT to describe the MC data

resents an increase of almost 10% in relation to the BH total like- 

ihood, as shown in Table 2 . 

Therefore, these results of the thermodynamic properties de- 

lare our second-order SCPT as a significant improvement on the 

ata prediction when compared to the second-order BH theory. 
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Fig. 2. (a) Phase diagrams in the ρ − T plane and (b) the saturation pressures of attractive hard-core square-well fluids with range λσ = 1 . 5 , 1 . 75 and 2.0. Open symbols: 

MC data from Ref. [60] . Dashed line: 2-order BH. Solid line: our SCPT. 

Table 2 

The likelihood L of each perturbation theory for the differ- 

ent potentials to represent the MC/MD simulation data of 

liquid-coexistence density ρl and logarithm of the satura- 

tion pressure log 10 p sat . 

Potential Perturbation ρl log 10 p sat Total a 

YK BH 67% 96% 64% 

SCPT 68% 99.4% 68% 

SW BH 90% 98% 88% 

SCPT 97% 99.6% 97% 

a The total likelihood is the product L total = L ρl 
L log 10 p sat 
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Fig. 3. Density profiles for an attractive Yukawa fluid with λσ = 1 . 8 near a Yukawa 

wall at reduced temperature k B T /ε = 1 . 1 and reduced density ρb σ
3 = 0 . 7 with two 

different values of εw . Open symbols: MC data from Ref. [8] . Dashed grey line: 

MWDA-BH. Solid grey line: MWDA-SCPT. Dashed black line: MMFT-BH. Solid black 

line: MMFT-SCPT. 

t

f

t  

b

r

M

t

s

t

m

t

t

e

V

.2. Density profiles near a Wall 

The grand potential, Eq. (1) in a planar geometry, must 

e obtained using the 1D planar convolutions, described in 

ppendix A and Appendix B . The equilibrium condition, Eq. (2) , is 

educed to 

δ�[ { ρ(z) } ] 
δρ(z) 

= k B T ln [ ρ(z)�3 ] − βc (1) 
hs 

(z) − βc (1) 
pert (z) 

+ V ext (z) − μ = 0 . (49) 

gain, the equilibrium condition, Eq. (49) , is achieved by minimiz- 

ng of the grand potential using the FIRE algorithm. The initial den- 

ity profile is set as uniform with value ρb . The planar geometry 

s spatially discretized with a grid spacing of 0 . 01 σ and length 

 = 5 σ , or defined H in slit-pores. The algorithm convergence cri- 

erion is max { | δ�[ { ρ} ] / δρ(z) | } ≤ atol = 10 −7 . 

For the YK fluid, and to compare with the MC simulation data 

vailable in the literature, we use the exponential external poten- 

ial for the YK fluid given in the form 

 ext (z) = 

{
∞ , z < σ/ 2 , 

−εw 

exp (−λ(z − σ/ 2)) , z > σ/ 2 , 
(50) 

here εw 

is the energy parameter of the wall. 

The Figs. 3 and 4 present our DFT results of density profiles 

(z) for an attractive YK fluid near an attractive hard-wall in 

omparison with the MC simulation data [8] for ρb σ
3 = 0 . 7 and 

b σ
3 = 0 . 4 , respectively, and different values of the wall attrac- 

ion intensity parameter εw 

. In most cases, all the DFT formula- 

ions considered provide very good accuracy and are practically 

ndistinguishable at the scales of the figures. Except for the case 

ith ρ σ 3 = 0 . 7 and εw 

/ε = 0 where the MMFT-SCPT seems to be
b 

6 
he most appropriate DFT formulation to represent the MC data. In 

act, the density profile predicted by the MMFT-SCPT is very close 

o the MC data and the density of the fluid on the wall has its

est value with this model. As shown in Table 3 , the MMFT-SCPT 

epresents an increase of 51% in likelihood when compared to the 

MFT-BH formulation. 

For the attractive SW fluid, Fig. 5 presents the DFT results ob- 

ained for the density profile ρ(z) inside a slit-pore and the MC 

imulation data available in the literature [61] for λσ = 1 . 5 and 

wo values of density and size of the pore, H. The MMFT-SCPT for- 

ulation represents the MC data very well, mostly very close to 

he wall. In essence, this improvement was possible due to the bet- 

er description of the fluid pressure because lim z→ 0 + ρ(z) = βP . 

The attractive hard-wall for the SW fluid is simulated with the 

xternal potential defined by 

 ext (z) = 

{ ∞ , z < σ/ 2 , 

−εw 

, σ/ 2 < z < λσ − σ/ 2 , 

0 , z > λσ − σ/ 2 

(51) 
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Fig. 4. Density profiles for an attractive Yukawa fluid with λσ = 1 . 8 near a Yukawa 

wall at reduced temperature k B T /ε = 2 . 0 and reduced density ρb σ
3 = 0 . 4 with two 

different values of εw . Open symbols: MC data [8] . Dashed grey line: MWDA-BH. 

Solid grey line: MWDA-SCPT. Dashed black line: MMFT-BH. Solid black line: MMFT- 

SCPT. 

Table 3 

The likelihood L of each DFT approach for the different poten- 

tials to represent the MC/MD simulation data of density profile 

near a wall ρ(z) , radial distribution function g(r) and interfacial 

tension γ . 

Potential Model ρ(z) g(r) γ Total a 

YK MWDA-BH 52% 40% 62% 13% 

MMFT-BH 22% 39% 73% 6% 

MWDA-SCPT 36% 40% 67% 10% 

MMFT-SCPT 73% 39% 69% 20% 

SW MWDA-BH 3% 95% 57% 1.6% 

MMFT-BH 14% 93% 82% 11% 

MWDA-SCPT 21% 96% 6% 1.2% 

MMFT-SCPT 57% 92% 93% 49% 

a The total likelihood is the product L total = L ρ(z) L g(r) L γ . 
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Fig. 5. Density profiles for an attractive square-well fluid with λσ = 1 . 5 inside a 

hard slit-like pore of length H at temperature k B T /ε = 1 . 0 and two different mean 

densities ρσ 3 . Open symbols: MC data [61] . Dashed grey line: MWDA-BH. Solid 

grey line: MWDA-SCPT. Dashed black line: MMFT-BH. Solid black line: MMFT-SCPT. 

Fig. 6. Density profiles for an attractive square-well fluid with λσ = 1 . 5 confined in 

an attractive square-well pore at reduced temperature k B T /ε = 1 . 0 and three differ- 

ent mean reduced densities ρσ 3 . The pore size is H = 10 σ and the wall attraction 

parameter is εw = 1 . 5 . Open symbols: MC data [15] . Dashed grey line: MWDA-BH. 

Solid grey line: MWDA-SCPT. Dashed black line: MMFT-BH. Solid black line: MMFT- 

SCPT. 

3

P

s

c

here εw 

is the wall interaction intensity and λ is the interac- 

ion range parameter. In Fig. 6 , the MC simulation data from Ref. 

15] represented by the open symbols were obtained using the 

VT ensemble. Our DFT results are obtained such that the mean 

ensity value ρ̄σ 3 be the same as the MC data. Once more, the 

MFT-SCPT predicts the density profile with a quite good perfor- 

ance, mainly in the attraction region of the wall. The density pro- 

les for ρ̄σ 3 = 0 . 730 predicted with both DFT formulations present 

 little deviation from the MC data. One possible explanation is the 

roximity of the triple point and our lack to describe a solid phase 

n this work. Lastly, these results represent an increase of 36% in 

he likelihood of MMFT-SCPT describing the MC data compared to 

he MWDA-SCPT results, as shown in Table 3 . 
7 
.3. Radial Distribution Function 

The radial distribution function g(r) can be calculated using the 

ercus’ test-particle method. The idea of this method is that the 

ystem is invariant when a particle is fixed at the origin; the pair 

orrelation functions are equivalent to the reduced density profiles 
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Fig. 7. Radial distribution function for the reference fluid of hard spheres. The inset 

presents the contact value of the radial distribution as a function of the density 

ρσ 3 . Open symbols: MC data from Ref. [62] . Solid black line: FMT. The distributions 

of ρσ 3 = 0 . 5 and ρσ 3 = 0 . 9 are shifted upward by 1.0 and 2.0. 
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Fig. 8. Radial distribution function for an attractive Yukawa fluid with λσ = 1 . 8 at 

reduced temperature k B T /ε = 2 . 0 and two different reduced densities. Open sym- 

bols: MC data from Ref. [63] . Dashed grey line: MWDA-BH. Solid grey line: MWDA- 

SCPT. Dashed black line: MMFT-BH. Solid black line: MMFT-SCPT. The profile of 

ρσ 3 = 0 . 8 is shifted upward by 1.0. 

Fig. 9. Radial distribution function for a square-well fluid with λσ = 1 . 5 and two 

different reduced density and two different reduced temperatures. Open symbols: 

MC data from Ref. [26,64] . Dashed grey line: MWDA-BH. Solid grey line: MWDA- 

SCPT. Dashed black line: MMFT-BH. Solid black line: MMFT-SCPT. The profile of 

k B T /ε = 1 . 5 is shifted upward by 1.0. 
f other species around the fixed particle. As the grand potential 

[ ρ(r)] reaches a minimum at equilibrium, the radial distribution 

unction g(r) satisfies the Euler-Lagrange equation 

δ�[ ρ(r)] 

δρ(r) 
= k B T ln 

[
ρ(r) 

ρb 

]
− k B T c 

(1) 
exc (r, [ ρ]) + V ext (r) − μexc = 0 ,

(52) 

ith the excess chemical potential μexc = μ − μid and the ideal 

as chemical potential μid = k B T ln (ρb �
3 ) . Here, V ext (r) is the ex- 

ernal potential produced by the test particle as 

 ext (r) = 

{
∞ , r < σ, 

u (r) , r ≥ σ, 
(53) 

n this form, the radial distribution, defined as g(r) = ρ(r) /ρb , can 

e obtained by 

(r) = exp [ −βV ext (r) ] exp 

[
c (1) 

exc (r, [ ρ]) + βμexc 

]
, (54) 

uch that, in the low-density limit g(r) ∼ e −βV ext (r) . 

Further, the equilibrium condition, Eq. (52) , is solved numeri- 

ally, minimizing the grand potential using the FIRE algorithm. The 

nitial density profile is set as ρ(r) = ρb g hs (r;ρb ) . The radial geom-

try is spatially discretized with a grid spacing of 0 . 01 σ and radius

 σ , which characterizes the cutoff radius. The algorithm conver- 

ence criterion is max { | δ�[ { ρ} ] / δρ(r) | } ≤ atol = 10 −7 . 

In Fig. 7 , the predicted radial distribution functions of hard- 

phere fluids for different densities are compared with MC sim- 

lation data available in the literature [62] . The figure shows the 

agnificent performance of the FMT to describe the structure of 

(r) as well as its contact value g(σ ) . 

The radial distribution functions for the YK fluid are presented 

n Fig. 8 . On the scales of the figures, the different DFT formula-

ions predict the MC data [63] admirably. The likelihood of each 

FT formulation is around 40% to represent the MC data. This re- 

ult reaffirms the fact that both DFT formulations can be used to 

alculate the radial distribution function of YK fluids. 

The radial distribution functions for the SW fluid are presented 

n Fig. 9 . On the scales of the figures, the different DFT formula-

ions indeed predict the MC data [26,64] . The likelihood of each 

FT formulation is around 94% to represent the MC data. This re- 

ult reaffirms that both DFT formulations can be used to calculate 

he radial distribution function of SW fluids. Although, we can see 

 little strange structure introduced by the MFT term on the MMFT 

esults. 
8 
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Fig. 10. Surface tension, γ , at the vapor/liquid interface of an attractive Yukawa 

fluid as a function of reduced temperatures k B T /ε. Open and closed symbols: MC 

and MD data from Ref. [65] , respectively. Dashed grey line: MWDA-BH. Solid grey 

line: MWDA-SCPT. Dashed black line: MMFT-BH. Solid black line: MMFT-SCPT. 
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Fig. 11. Surface tension, γ , at the vapor/liquid interface of an attractive square-well 

fluid as a function of reduced temperatures k B T /ε. Closed symbols: MD data from 

Ref. [60] . Dashed grey line: MWDA-BH. Solid grey line: MWDA-SCPT. Dashed black 

line: MMFT-BH. Solid black line: MMFT-SCPT. 
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These results confirm that the radial distribution function re- 

ults are not sensitive to variations in the DFT formulation. 

.4. Vapor-liquid coexistence 

To describe a planar vapor-liquid interface, we also solve a pla- 

ar density profile ρ(z) from the condition given by Eq. (49) . The 

nterface is spatially discretized in 10 0 0 grid points covering a 

idth of 20 σ , leading to a grid spacing of 0 . 02 σ . The numerical

rocedure is the same as discussed in Section 3.2 . The main dif- 

erence here is the initial density profile, which is defined by sym- 

etrical form, 

(z) = 

1 

2 

( ρl + ρv ) − 1 

2 

( ρl − ρv ) tanh ( 
2 z 

δ
) , (55) 

here z = 0 is the position of the interface, ρl and ρv are the liquid

nd vapor densities, respectively, and δ is the width of the interfa- 

ial region. The coexistence densities for a given T are determined 

n the same geometry to avoid numerical errors. The δ is deter- 

ined by minimizing the grand potential as a unique function of 

hat parameter. Further, the grand potential is minimized using the 

IRE algorithm for the density profile ρ(z) with the convergence 

riterion given by max { | δ�[ { ρ} ] / δρ(r) | } ≤ atol = 10 −5 . This un- 

onstrained minimization, in opposition to the Eq. (55) , is neces- 

ary to allow oscillation on the density profile that appear mainly 

t low temperatures. 

The surface tension of the system is calculated by the difference 

f the grand potential of the interface and that of the bulk phases. 

nce we have the interfacial density profile calculated by the DFT, 

he surface tension γ can be calculated from 

= 

�[ ρ(z)] 

A 

+ 

∫ ∞ 

−∞ 

pd z , (56) 

here A is the cross-sectional area of the system, and p is the 

ulk pressure of the fluid related to the bulk grand-potential by 

p = −�b /V . 

In Fig. 10 , the surface tension results for the attractive YK flu- 

ds with a range of λσ = 1 . 8 , 3.0, and 4.0 are presented. At low

emperatures, the MMFT results are quantitatively more consistent 

ith the MD simulation data [65] than the MWDA results. As we 

an see in Table 3 , the likelihoods of the MMFT results predict the

D data are greater than the likelihoods of the MWDA results. The 

MFT-BH results are 4% more likely to represent the MD data than 

he MMFT-SCPT results, but it seems to be not statistically relevant. 
9 
o better discriminate models, we would need MD data at lower 

emperatures. 

The surface tension results for the attractive SW fluid with 

ange of λσ = 1 . 5 , 1.75, and 2.0 are presented in Fig. 11 . The

MFT-SCPT results predict the MD simulation data [60] wonder- 

ully well. The likelihood to describe the MD data for the MMFT- 

CPT is 11% greater than the likelihood of MMFT-BH, as shown in 

able 3 . 

Therefore, both MMFT-BH and MMFT-SCPT can be used to pre- 

ict the surface tension for YK and SW fluid. 

. Conclusions 

We developed a self-consistent perturbation theory based on 

he coupling parameter expansion but using the radial distribution 

unction g(r) calculated by DFT. Unlike the conventional DFT for- 

ulations, an advantage of this theory is that there is no need to 

olve the OZ equation for the direct correlation function. There- 

ore, this perturbation theory can be applied to any pair poten- 

ial. When compared to the second-order Barker-Henderson per- 

urbation theory, the self-consistent theory predicts better coexis- 

ence liquid density and saturation pressure for both YK and SW 

uids. The critical temperature and pressure are overestimated on 

oth perturbation theories. We understand that our results are not 

enormalized, and a renormalization group analysis should be done 

n future works. 

To use our self-consistent perturbative DFT, we presented two 

ifferent versions of the perturbative contribution to the excess 

elmholtz free-energy: one based in a modified WDA (MWDA); 

nd another based on a modified MFT (MMFT). These two func- 

ional forms are evaluated and compared with MC data of liquid- 

all interaction, radial distribution function, and liquid-vapor in- 

erface for YK and SW fluids. For the YK fluid, the MWDA is bet- 

er than MMFT for the BH perturbation theory representing an in- 

rease of 7% on the likelihood to describe the set of MC/MD data. 

owever, MMFT is better than MWDA when it comes to SCPT, with 

n increase of 10% on the likelihood. For SW fluids, the MMFT is al- 

ays better than the MWDA either for BH or SCPT, increasing 10% 

nd 48% on the likelihood, respectively. Moreover, both DFT for- 

ulations can generate the radial distribution functions needed by 

he SCPT. 

In this work, we define a likelihood to compare the DFT models 

ith the MC or MD data. However, most of the available MC data 

ave no uncertainties reported. Our normalization of the residual 

um of squares χ2 was used to define a scale for the data. So, 



E.d.A. Soares, A.G. Barreto Jr. and F.W. Tavares Fluid Phase Equilibria 542–543 (2021) 113095 

s

d

d

l

t

c

S

i

e

t

o

t

f

p

t

o

t

T

f

D

c

i

C

o

s

s

A

t

a

D

n

v

m

A

b

p

F

b

ρ

w

g

t

n

a

n

w  

w

n

w

ρ

w

t

e

w

a

E

g

n

w

m  

u

a

n

1

o

ω

A

f

ω̃

a

ω

s

T

w

n  

ω  

w

n

t

ω
f

s

g

v

ome care must be taken to compare likelihood to different MC 

ata. For this reason, the likelihood values for different sets of MC 

ata should not be compared to each other. As an example, the 

ikelihood for the SW g(r) cannot be compared to the YK g(r) . But 

he likelihood for the SW g(r) calculated with MWDA-BH can be 

ompared to the likelihood for the SW g(r) calculated with MMFT- 

CPT because the MC data are the same. 

Computationally, the MWDA and MMFT versions are equivalent 

n performance and easiness of implementation. Here, we must 

mphasize here that these versions of DFT are attempts to describe 

he exact structures of the hard-core fluids described at the level 

f perturbation theory. There is no exact solution as a fundamen- 

al measure theory for the perturbative contribution of the excess 

ree-energy. 

Finally, we would like to mention possible extensions of the 

resented self-consistent perturbative DFT. The SCPT can be ex- 

ended to treat soft-core fluids, associating fluids and solids. More- 

ver, it would be of interest to generalize the SCPT to describe mix- 

ures and chain fluids. 
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ppendix A. The weighted densities on different geometries 

The weighted densities necessary to the DFT calculations must 

e calculated differently in each geometry. On the symmetrical 1D 

lanar geometry, the convolution must be calculated as follows. 

irst, let remember that in 1D planar geometry, the density can 

e written as ρ(r) = ρ(z) , and its Fourier Transform is 

˜ (k) = 

∫ 
d r ρ(r) e i k·r = 

˜ ρ(k z )(2 π) 2 δ(k x ) δ(k y ) (A.1) 

here the two Dirac-delta functions are present due to the homo- 

eneity of the density field on the x − y plane. Now, let evaluate 

he weighted density n (r) through the convolution theorem 

 (r) = 

∫ 
d r ′ ρ(r ′ ) ω(r − r ′ ) = 

∫ 
d k 

(2 π) 3 ̃
 ρ(k) ̃  ω (k) e −i k·r (A.2) 

nd using the Eq. (A.1) , we get 

 (r) = 

1 

2 π

∫ 
d k z ̃  ρ(k z ) ̃  ω (k z ) e 

−ik z z (A.3) 
10 
here ˜ ω (k z ) = ̃

 ω (k x = 0 , k y = 0 , k z ) . Returning to the real space,

e finally obtain 

 

(planar) (z) = 

∫ ∞ 

−∞ 

d z ′ ρ(z ′ ) ω 

(planar) (z − z ′ ) . (A.4) 

For the 1D spherically symmetric geometry, the density can be 

ritten as ρ(r) = ρ(r) , and its Fourier Transform is 

˜ (k) = 

∫ 
d r ρ(r) e i k·r = 4 π

∫ 
d r r 2 ρ(r ) j 0 (kr ) (A.5) 

here j � is the spherical Bessel function of � -order. Let remember 

he identity 

 

i k·r = 4 π
∞ ∑ 

� =0 

� ∑ 

m = −� 

i � j � (kr) Y �m 

(θ, φ) Y ∗�m 

(θk , φk ) (A.6) 

here Y �m 

are the spherical harmonic functions. Now, let evalu- 

te the weighted density n (r) through the convolution theorem, 

q. (A.2) , and applying the indentity given by the Eq. (A.6) we 

et 

 (r) = 

2 

π

∫ ∞ 

0 

d r ′ r ′ 2 ρ(r ′ ) 
∫ ∞ 

0 

d k k 2 ˜ ω (k ) j 0 (kr) j 0 (kr ′ ) , (A.7) 

here we used of the symmetry ˜ ω (k) = ̃

 ω (k ) and the othornor- 

ality of Y �m 

. The integral on k is a little tricky but can be solved

sing the definition of the spherical Bessel function, such that 

2 

π

∫ ∞ 

0 

d k k 2 ˜ ω (k ) j 0 (kr) j 0 (kr ′ ) 

= 

1 

r r ′ 
1 

2 π

∫ 
d k ̃  ω (k ) e ik (r −r ′ ) = 

1 

r r ′ ω( r − r ′ ) (A.8) 

nd the 1D spherical convolution must be calculated by 

 

(spher) (r ) = 

1 

r 

∫ ∞ 

0 

d r ′ r ′ ρ(r ′ ) ω 

(spher) (r − r ′ ) . (A.9) 

In both geometries, the weight functions can be obtained by a 

D inverse Fourier Transform of the 3D Fourier Transform of the 

riginal weight function, in the form 

 

(1D) (z) = 

∫ 
d k 

2 π
˜ ω (k ) e −ikr (A.10) 

s an example, the spherical 3D Fourier transform of the ω 3 (r) 

rom the FMT is 

 

 3 (k ) = 

∫ 
ω 3 (r ) 

sin kr 

kr 
4 π r 2 d r 

= 

πσ 2 

k 

[
sin (kσ/ 2) 

(kσ/ 2) 2 
− cos (kσ/ 2) 

kσ/ 2 

]
, (A.11) 

nd the inverse planar 1D Fourier Transform is given by 

 

(planar) 
3 

(z) = 

1 

2 π

∫ 
˜ ω 3 (k ) e −ikz d k 

= π [(σ / 2) 2 − z 2 ]
(σ/ 2 − | z| ) , (A.12) 

uch that the 1D convolution must be obtained by Eq. (A.4) . 

hus, we can calculate the others 1D planar weight functions 

ith the same method. The other linearly independent pla- 

ar 1D weight function are ω 

(planar) 
2 

(z) = πσ
(σ/ 2 − | z| ) and

 

(planar) 
v 2 (z) = 2 πz
(σ/ 2 − | z| ) ̂ z . For the 1D spherical geometry, the

eight functions are the same, changing z → r. However, we are 

ot interested in the inner region (r < σ ) of the hard-sphere con- 

act, such that we start the convolution integral at r = σ . 

For the WDA weight function, the process is similar to the 

 3 (r) weight function from the FMT. In fact, the planar 1D weight 

unction is ω 

(planar) 
wda 

(z) = 

3 
4(ψσ ) 3 

[(ψσ ) 2 − z 2 ]
(ψσ − | z| ) . 
All the convolutions and the FMT functional on planar and 

pherical geometries are implemented in a Python code by our 

roup, i.e., the Eq. (A.4) and Eq. (A.9) were solved using the con- 

olve1d function from Numpy package [66] . 
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ppendix B. The pair interaction potential on different 

eometries 

As discussed in Appendix A , the convolutions involving the pair 

otential u (r) and the density ρ(r) must also be defined in the 

D geometries. We known that the convolutions are necessary to 

alculate the terms of our modified mean-field theory as 

 mmft [ ρ(r)] = 

1 

2 

∫ 
d r 

∫ 
d r ′ ρ(r) ρ(r ′ ) u (r − r ′ ) 

= 

1 

2 

∫ 
d r ρ(r)�(r) (B.1) 

here �(r) = 

∫ 
d r ′ ρ(r ′ ) u (r − r ′ ) is the potential convolution. Let

tart with the Yukawa (YK) potential, Eq. (43) , whose the Fourier 

ransform is 

 

 YK (k ) = 

∫ 
u YK (r ) 

sin kr 

kr 
4 π r 2 d r 

= − 4 πεσ 3 

(kσ ) 2 + (λσ ) 2 

[
cos (kσ ) + λσ

sin (kσ ) 

kσ

]
+ 

4 πεσ 2 

k 

[
cos (kσ ) 

kσ
− sin (kσ ) 

(kσ ) 2 

]
, (B.2) 

hich in the limit of very small hard-core region returns to 

he well-known result of lim σ→ 0 ̃  u YK (k ) = 4 πεσ/ (k 2 + λ2 ) . The in-

erse 1D Fourier Transform gives the 1D planar YK potential writ- 

en as 

 

( 1D ) 
YK 

(z) = 

{−επ
(

σ (2+ λσ ) 
λ

− z 2 
)
, | z| < σ, 

−2 πε e −λ(| z|−σ ) 

λ/σ
, | z| ≥ σ

(B.3) 

nce more, the 1D planar convolution must be calculated by 

q. (A.4) and the 1D spherical convolution by Eq. (A.9) , as dis- 

ussed in Appendix A . 

Similarly, the Square-Well (SW) potential, Eq. (44) , has as 

ourier Transform 

 

 SW 

(k ) = 

∫ 
u SW 

(r ) 
sin kr 

kr 
4 π r 2 d r 

= 

4 πε(λσ ) 2 

k 

[
cos (kλσ ) 

kλσ
− sin (kλσ ) 

(kλσ ) 2 

]
, (B.4) 

nd the 1D inverse Fourier Transform gives the 1D planar SW po- 

ential in the form u ( 1D ) 
SW 

(z) = −επ(λ2 σ 2 − z 2 )
(λσ − | z| ) . 
ppendix C. The interpolation of the perturbation free-energy 

Hermite splines are typically used for interpolation of numeric 

ata specified at some values x 1 , x 2 , . . . , x n , to obtain a smooth con-

inuous function. The data should consist of the desired function 

alue and derivatives at each x i . The Hermite formula is applied to 

ach interval [ x i , x i +1 ] independently, being defined by 

 3 (x ) = a 0 + a 1 x + a 2 x 
2 + a 3 x 

3 , (C.1)

ith the following constraints of the original function values f (x i ) 

nd its derivatives at the borders of the interval as 

 3 (x i ) = f i , H 3 (x i +1 ) = f i +1 , 

 

′ 
3 (x i ) = 

d f 

d x 

∣∣∣∣
i 

, H 

′ 
3 (x i +1 ) = 

d f 

d x 

∣∣∣∣
i +1 

, (C.2) 

hich are necessary to determine the coefficients a i . The two poly- 

omials resulting from these constraints are the cubic Hermite ba- 

is functions, given in the form Davis [67] 

 0 (z) = 1 − 3 z 2 + 2 z 3 , (C.3a) 

 1 (z) = z − 2 z 2 + z 3 , (C.3b) 
11 
nd the interpolating cubic Hermite polynomial can be written 

s 

 3 (x ) = f i h 0 ( ̃  x ) + f i +1 h 0 (1 − ˜ x ) + 

d f 

d x 

∣∣∣∣
i 

�x i h 1 ( ̃  x ) 

− d f 

d x 

∣∣∣∣
i +1 

�x i h 1 (1 − ˜ x ) . (C.4) 

here ̃  x = (x − x i ) / �x i and �x i = x i +1 − x i . 

This cubic Hermite function was used to interpolate the 

elmholtz free-energy per particle f given by the first-order terms 

f the perturbation theories, Eqs. (21) or (25) , as a function of the 

educed density ρσ 3 . The range of the 1D table on the reduced 

ensity was chosen to be ρσ 3 = [0 ; 1] with �ρσ 3 = 0 . 02 . Increas-

ng the precision of the table to �ρσ 3 = 0 . 01 does not result in

mprovements. The first derivatives necessary to construct the in- 

erpolant function are calculated from a centered difference ap- 

roximation with second-order accuracy on the table values. On 

he border of the table, we use a forward/backward finite differ- 

nce approximation again with second-order accuracy. 

The one-dimensional cubic Hermite spline can be extended to 

D by interpolating each parcel of the Eq. (C.4) again on the second 

imension. 

 3 ( x, y ) = f i, j h 0 ( ̃  x ) h 0 ( ̃  y ) + f i +1 , j h 0 ( 1 − ˜ x ) h 0 ( ̃  y ) 

+ f i, j+1 h 0 ( ̃  x ) h 0 ( 1 − ˜ y ) + f i +1 , j+1 h 0 ( 1 − ˜ x ) h 0 ( 1 − ˜ y ) 

+ 

∂ f 

∂x 

∣∣∣∣
i, j 

�x i h 1 ( ̃  x ) h 0 ( ̃  y ) − ∂ f 

∂x 

∣∣∣∣
i +1 , j 

�x i h 1 ( 1 − ˜ x ) h 0 ( ̃  y ) 

+ 

∂ f 

∂x 

∣∣∣∣
i, j+1 

�x i h 1 ( ̃  x ) h 0 ( 1 − ˜ y ) 

− ∂ f 

∂x 

∣∣∣∣
i +1 , j+1 

�x i h 1 ( 1 − ˜ x ) h 0 ( 1 − ˜ y ) 

+ 

∂ f 

∂y 

∣∣∣∣
i, j 

�y i h 0 ( ̃  x ) h 1 ( ̃  y ) 

− ∂ f 

∂y 

∣∣∣∣
i +1 , j 

�y i h 0 ( 1 − ˜ x ) h 1 ( ̃  y ) 

+ 

∂ f 

∂y 

∣∣∣∣
i, j+1 

�y i h 0 ( ̃  x ) h 1 ( 1 − ˜ y ) 

− ∂ f 

∂y 

∣∣∣∣
i +1 , j+1 

�y i h 0 ( 1 − ˜ x ) h 1 ( 1 − ˜ y ) 

+ 

∂ 2 f 

∂ x∂ y 

∣∣∣∣
i, j 

�x i �y i h 1 ( ̃  x ) h 1 ( ̃  y ) 

− ∂ 2 f 

∂ x∂ y 

∣∣∣∣
i +1 , j 

�x i �y i h 1 ( 1 − ˜ x ) h 1 ( ̃  y ) 

− ∂ 2 f 

∂ x∂ y 

∣∣∣∣
i, j+1 

�x i �y i h 1 ( ̃  x ) h 1 ( 1 − ˜ y ) 

+ 

∂ 2 f 

∂ x∂ y 

∣∣∣∣
i +1 , j+1 

�x i �y i h 1 ( 1 − ˜ x ) h 1 ( 1 − ˜ y ) (C.5) 

here ̃  y = (y − y i ) / �y i and �y i = y i +1 − y i . 

This bi-cubic Hermite function was used to interpolate the 

elmholtz free-energy per particle f given by the second-order 

erms of the perturbation theories, Eqs. (22) or (26) , as a func- 

ion of the reduced density ρσ 3 and reduced temperature k B T /ε. 

he 2D range of the table was chosen to be ρσ 3 = [0 ; 1] with

ρσ 3 = 0 . 02 and k B T /ε = [0 ; 4] with �k B T /ε = 0 . 02 in those re-

uced units. This range of 50 points in density and 50 points in 
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emperature is large enough for our DFT calculations of inhomo- 

eneous fluids. Refining the table does not increase the precision 

f the table and does not result in any improvement. Again, the 

rst and second-mixed derivatives necessary to construct the inter- 

olant function are calculated from a centered difference approx- 

mation with second-order accuracy on the table values. We use 

 forward/backward finite difference approximation with second- 

rder accuracy on the border of the table 

In return to this nontrivial investment, the values of the func- 

ion, first partial derivatives, and second partial derivatives are re- 

roduced exactly at the grid points, changing continuously as the 

nterpolating point moves from one grid cell to the next. Using 

q. (C.5) as the interpolating function, the Helmholtz free-energy 

er particle is given by a bi-cubic polynomial. Because the first law 

f thermodynamics is given by 

 f = −s d T + 

p 

ρ2 
d ρ , (C.6) 

here s is the entropy per particle and p is the pressure. Bi- 

uadratic polynomials gives the pressure and entropy per particle. 

ll the derivatives of these thermodynamic quantities are given by 

i-linear interpolations. In particular, the mixed derivative, 

∂ 2 f 

∂ T ∂ ρ
= − ∂s 

∂ρ

∣∣∣∣
T 

= 

1 

ρ2 

∂ p 

∂T 

∣∣∣∣
ρ

, (C.7) 

epresents the Maxwell thermodynamic relation that is satisfied 

n the whole interpolation range. Therefore, the mixed derivative 

 

2 f/∂ T ∂ ρ is extremely necessary to make the free-energy thermo- 

ynamically consistent. Lastly, note that the partial derivatives of 

i-cubic interpolant are determined by the derivatives of the two 

asis functions given by Eq. (C.3) . 
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