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Abstract

Nonequilibrium Phenomena in Thermonuclear
Supernovae: from life to death of white dwarf stars

Elvis do Amaral Soares

Advisor: João Ramos Torres de Mello Neto
Co-advisor: Takeshi Kodama

Abstract of the Ph.D. Thesis presented to the Graduate Program in Physics
of the Institute of Physics of the Federal University of Rio de Janeiro - UFRJ,
as part of the requirements to the obtention of the title of Doctor in Sciences
(Physics).

In this thesis we investigate some non-equilibrium phenomena in the dynamics of
evolutional stages of white dwarfs, such as cooling and Type Ia supernova explosions.

The first part of the thesis is dedicated to introduction of the general concept of non-
equilibrium thermodynamics, and its application in describing transient phenomena in
systems near-equilibrium which are very common in Nature. In particular, we present
the context of astrophysical systems focusing on the physical ingredients present inside
white dwarf stars, which are the progenitors of type Ia supernovae.

In the second part of the thesis, we deal with white dwarf stars, more precisely
their thermal evolution as a stationary state of thermodynamics. Since the nuclear
fusion processes have been ceased in these stars, their thermal energy stored during
the period as proto-white dwarf is the only source of their luminosity as an almost
steady energy from the core region to the surface. In this thesis, we introduce a very
simple model for such a process of white dwarfs cooling, and derive a simple analytic
expression which constrains their radii, masses and effective temperatures, as they
cool.

The third and final part of the thesis is devoted to the study of retardation effects on
hydrodynamic calculations, more precisely on the delayed thermalization of the small-
est fluid element considered numerically. Below the length scale defined by this ele-
ment of fluid, transient phenomena are ignored by many numerical calculations. This
thesis is dedicated mainly to the improvement of some numerical methods used for the
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simulation of thermonuclear supernovas, taking into account a simplified model of the
retardation effects coming from transient processes, well described by non-equilibrium
thermodynamics. We have verified that the delayed thermalization effects in the ma-
terial can be determined by its signatures on the supernova observables, such as nu-
cleosynthesis and energy released during the explosion.

Keywords: white dwarfs - supernovae: general - shock waves - nuclear reactions,
nucleosynthesis, abundances - hydrodynamics.
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Resumo

Fenômenos Fora-do-Equilíbrio em Supernovas
Termonucleares: da vida à morte de estrelas anãs brancas

Elvis do Amaral Soares

Orientador: João Ramos Torres de Mello Neto
Coorientador: Takeshi Kodama

Resumo da Tese de Doutorado apresentada ao Programa de Pós-Graduação
em Física do Instituto de Física da Universidade Federal do Rio de Janeiro -
UFRJ, como parte dos requisitos necessários à obtenção do título de Doutor
em Ciências (Física).

Nesta tese investigamos alguns fenômenos fora-do-equilíbrio na dinâmica dos es-
tágios evolutivos de anãs brancas, tais como resfriamento e explosões de supernovas
do Tipo Ia.

A primeira parte da tese é dedicada à introdução do conceito geral de termod-
inâmica fora-do-equilíbrio, e sua aplicação na descrição de fenômenos transientes em
sistemas próximos ao equilíbrio que são bem comuns na Natureza. Em particular,
apresentamos o contexto de sistemas astrofísicos focando nos ingredientes físicos pre-
sentes no interior de estrelas do tipo anã branca, que são os progenitores de supernovas
do tipo Ia.

Na segunda parte da tese tratamos de estrelas anãs brancas, mais precisamente sua
evolução térmica como um estado estacionário de termodinâmica. Uma vez que os
processos de fusão nuclear foram extinguidos nessas estrelas, sua energia térmica ar-
mazenada durante o período como proto-anã branca é única fonte de luminosidade
como um fluxo estacionário de energia da região central até a superfície. Nessa tese in-
troduzimos um modelo bem simples para tal processo de resfriamento de anãs brancas
e, obtemos uma expressão analítica simples que vincula seus raios, massas e temperat-
uras efetivas, conforme elas esfriam.

A terceira e última parte da tese é dedicada ao estudo de efeitos de retardamento
em cálculos hidrodinâmicos, mais precisamente na termalização atrasada do menor el-
emento de fluido descrito numericamente. Abaixo da escala de comprimento definida
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por esse elemento de fluido, os fenômenos transientes são ignorados por muitos cálcu-
los numéricos. Essa tese é dedicada principalmente ao aprimoramento de alguns méto-
dos numéricos utilizados para a simulação de supernovas termonucleares, levando
em conta uma modelo simplificada dos efeitos provenientes de processos transientes
pensando-os como fenômenos descritos a partir da termodinâmica fora-do-equilíbrio.
Verificamos que os efeitos da termalização atrasada do material podem ser determina-
dos através de suas assinaturas nos observáveis, como nucleossíntese e energia liber-
ada na explosão.

Palavras-chave: anãs brancas - supernovae: geral - ondas de choque - reações nu-
cleares, nucleossíntese, abundâncias - hydrodinâmica.
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Twinkle, twinkle, quasi-star
Biggest puzzle from afar

How unlike the other ones
Brighter than a billion suns
Twinkle, twinkle, quasi-star

How I wonder what you are.
– George Gamow
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Chapter 1

Prologue

Stars have a life cycle much like animals. They get
born, they grow, they go through a definite internal
development, and finally they die, to give back the
material of which they are made so that new stars
may live.

– Hans Bethe (1906-2005)

1.1 The Life of White Dwarfs

The vast majority (of the order of 90%, see [91]) of all stars in our galaxy, includ-
ing our sun, will evolve toward the final state of a white dwarf. Many of them are
members of binary systems, being able to capture appreciable amounts of matter from
their companions. The accreting matter process leads to the compression and heating
of the ingoing material, and its ignition can lead to a beautiful and violent explosion,
the Type Ia supernova.

1.1.1 Formation

After the hydrogen-burning period of a main-sequence (MS) star with masses from
about 0.07 to 11 M� [57], such a star will expand to a red giant during helium (He)
burning to carbon (C) and oxygen (O) in its core by the two-step triple-alpha fusion
process. If the red giant has insufficient mass to achieve the core temperatures around
109 K required to carbon fusion, an inert core of carbon and oxygen will build up at its
center. After such a star ejects off its outer layers forming a planetary nebula, it will
leave behind the core, i.e., the remnant white dwarf (WD)) [e.g., 86]. If the mass of the
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progenitor is between 8-11 M�, the core temperature will be sufficient to fuse carbon
but not neon, forging an oxygen–neon–magnesium white dwarf [170]. Stars of very
low mass will not be able to burn helium, hence, a helium white dwarf [97] may form
by mass loss in binary systems.

1.1.2 Degenerate Matter

Although the material in a white dwarf still keeps very high temperature, it is not
enough to provoke the fusion reactions of heavy elements such as C and O, so the star
has no source of energy. As a result, it cannot keep the quasi-stationary hydrostatic
equilibrium through the balance of the energy production of thermonuclear reactions
and cools down slowly due to the energy loss as luminosity (see Section 1.1.4). As a
consequence, the gravitational collapse advances, until the pressure of high electron
density due to the Pauli principle becomes dominant. In fact, an Earth-sized white
dwarf with Sun mass has a density of the order of 106 g/cm3 while the Earth itself has
an average density of only 5.4 g/cm3. That means a white dwarf is a million times
denser than Earth and can be supported only by electron degeneracy pressure, as first
resolved by Fowler [49].

Under high densities and/or temperature, the matter becomes a completely ionized
gas when the electrons are all forced to be apart from their parent atoms. For instance,
in the core of a WD there is a collection of positively charged ions, largely carbon and
oxygen nuclei, surrounded by an electron sea. In a relatively low density and very high
temperature, ionized gas thermal motions of the electrons (which move faster than the
ions, and hence collide more frequently) provide the pressure support, because most
of the available electron energy levels are unfilled and the electrons are free to switch
from one energy state to another. But as the density increases, the lower levels of elec-
trons start to be fulfilled and the remaining electrons are forced to occupy states of
higher energy than the thermal kinetic energy, due to the Pauli’s exclusion principle1.
Such states of a fermion gas are called degenerated. Increasing the density, the electron
gas becomes strongly degenerate and produce the pressure against compression be-
cause when compressed, the energy levels of occupied states becomes higher. Hence
the high momentum electrons contribute to increase the internal pressure, known as
degeneracy pressure. The degeneracy pressure is the reason why white dwarfs are also
called degenerate stars.

1Two fermions cannot exist in identical quantum energy state.
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1.1.3 Mass–radius relation and the Chandrasekhar Limit

The gravity force and the degeneracy pressure can keep a white dwarf stable for-
ever. This hydrostatic equilibrium state may exist for billions of years. To illustrate the
fundamental problem of obtaining the equilibrium configuration of a WD star, we can
calculate the mass-radius relation based on a dimensional argument [113]. Let consider
a white dwarf of mass M and radius R composed only by a degenerate electron gas.
We approximate the internal energy U by the form

U = mec2N


[(

p
mec

)2

+ 1

]1/2

− 1

 (1.1)

where p is an average momentum over the star electrons, and N is the total number
of electrons, such that this internal energy can be associated to the relativistic Fermi
energy if p is related to the Fermi momentum. In fact, we can associate this average
momentum to the appropriate average electron density ne according to

p = h̄(3π2ne)
1/3, (1.2)

and
ne = ζN/R3, (1.3)

where ζ is a dimensionless parameter. If ne corresponded to the mean electron density
in whole star, we would expect ζ = 3/4π, but we shall leave its value undetermined
at this point.

The gravitational potential energy can be written as

Ω = −ν
GM2

R
, (1.4)

where ν is a second dimensionless parameter. For a homogeneous sphere, as is well-
known, ν = 3/5. We can introduce two new dimensionless variables n and r, such
that N = nN0 and R = rR0, with the requirement that the relativity parameter x =

p/mec have the form x = n1/3/r and that the potential energy have the form Ω =

−mec2N0n2/r, so that

N0 =
(3π2ζ)1/2

ν3/2

(
h̄c

Gm2

)3/2

(1.5)

and
R0 = (3π2ζ)1/3

(
h̄

mec

)
N1/3

0 . (1.6)
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where m = M/N = muµe, mu is the atomic unit mass and µe the mean molecular
weight per electron. The total energy E now takes the form

E = mec2nN0


[(

n2/3

r
+ 1

)]1/2

− 1− n
r

 . (1.7)

In terms of these variables the variational principle requires that the partial deriva-
tive ∂E/∂r must vanish. Hence we obtain

r =
(1− n4/3)1/2

n1/3 . (1.8)

For small values of n, corresponding to non-relativistic electrons, (1.8) reduces to

lim
p�mec

RM1/3 =
(3π2ζ)2/3

ν

(
h̄

mec

)(
h̄c

Gm2

)
m1/3, (1.9)

which is the analytical form of the exact solution of the Lane-Emden equation2 with
polytropic index 3/2, where

(3π2ζ)2/3

ν
=

1
2

(
3π

4

)2/3

ξ5/3
1

(
dθ3/2

dξ

)1/3

ξ1

= 4.512. (1.10)

This implies that when the mass M increases the radius R decreases to keep the star
in hydrostatic equilibrium, with the total energy (1.7) negative. However for large M,
the gravitational potential energy becomes more relevant than the internal energy and
E decreases without bound at the same time as R decreases. No equilibrium exists,
and gravitational collapse sets in. So, there is a mass limit value at which equilibrium
is maintained with total energy E = 0 and R goes to zero. This situation corresponds to
electrons in the extreme relativistic limit, with n = 1 and r = 0, resulting in a maximum
mass M of

lim
p�mec

M =
(3π2ζ)1/2

ν3/2

(
h̄c

Gm2

)3/2

m, (1.11)

which can also be related to the exact solution of the Lane-Emden equation now with

2The attentive reader must already know the Lane–Emden equations, which describes self-graviting
spherical polytropes in hydrostatic equilibrium as simple models of a stars. The Lane-Emden equation
combines the polytropic equation of state and the equation of hydrostatic equilibrium in a simplest form
written as

1
ξ2

d
dξ

(
ξ2 dθ

dξ

)
+ θn = 0,

which, in the general case, must be solved numerically for each polytropic index n.
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polytropic index 3, where

(3π2ζ)1/2

ν3/2 =

(
3π

4

)1/2
(
−ξ2

1
dθ3

dξ

∣∣∣∣
ξ1

)
= 3.098. (1.12)

Solving equations (1.10) and (1.12) to obtain the best approximation for ζ and ν, we
get

ζ = 0.323 and ν = 1.00. (1.13)

Substituing these values for ν and ζ in equations, we obtain the mass-radius relation
for ideal white dwarfs

R =
2.45354

µe

(
M

Mch

)−1/3
[

1−
(

M
Mch

)4/3
]1/2

R⊕ (1.14)

and the Chadrasekhar’s limit [29] for the mass of ideal white dwarfs3

MCh =

(
2
µe

)2

1.459 M� (1.15)

If the M ≤ MCh the white dwarf gravity can be supported by the relativistic electron
pressure, but for M > MCh the white dwarf collapses into itself. If we compare the
obtained radius R from (1.14) with the numerical values obtained by Chandrasekhar
[28, Chapter 11], the agreement is excellent and the correction is under 10%. The Fig-
ure 1.1 presents the Eq.(1.14) and it is compared to the DA-WD and DB-WD data from
the Data Release 7 of Sloan Digital Sky Survey [87], with DA and DB indicating their
spectral type, which is described in Section 1.1.5.

Many works have been developed since the discovery of the Chandrasekhar’s mass
limit [29] in the field of finite temperature corrections to the degenerate equation of
state (EoS) [e.g., 103, 67, 24]. However empirical mass-radius relations obtained from
the spectroscopic or photometric measurements of masses and radii are still needed
and used to understand the structure and the cooling dynamics of WDs.

1.1.4 Cooling

A white dwarf is very hot when it forms with core temperature (Tc) from 108 K to
109 K being more brilliant than the Sun although 100 times smaller, but without no
nuclear energy generation it will gradually radiate its energy over 5 to 10 billion years.

3For the white dwarf structure and the limiting mass from the Chandrasekhar’s theory, we suggest
the [86, § 37.1] and the [28, Chapter 11].
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Figure 1.1: Distribution of the DA-WD (blue circles) and DB-WD (yellow
squares) data in the mass and radius plane. The solid (red) line corresponds
to the analytical approximation (1.14) of the ideal WD mass-radius relation
with a pure carbon composition. The data are taken from Ref.[87].

This means that the emitting radiation, which initially has a high color temperature
(white), will lessen and redden with time. Over a very long time, a white dwarf will
cool and its material will begin to crystallize the core. The star’s low temperature
means it will no longer emit significant heat or light, and it will become a cold black
dwarf into the darkness. Because the length of time it takes for a white dwarf to reach
this state is calculated to be longer than the current age of the universe (approximately
13.8 billion years [1]), it is thought that no black dwarfs yet exist [47]. The oldest white
dwarfs still radiate at temperatures of a few thousand kelvins.

The zero temperature approximation of highly degenerate electron gas pressure
provides an adequate description of the stellar structure as a whole since the kinetic
energy associated with the Fermi momentum is dominant compared to the thermal en-
ergy in the bulk domain. While the area close to the surface (outer layers) has consider-
able high effective temperature Teff (from 5,000 K to over 100,000 K) and commands the
thermal evolution of the whole white dwarf. The bulk degenerate electrons have high
thermal conductivity and keep the star’s core essentially isothermal, but the radiative
opacity in the outer layers prevents the white dwarf to cool quickly. This mechanism
is similar to the cooking with a clay pot: the cooking food is almost isothermal and the
clay wall difficults the heat transfer to the outside world.
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The hotter outer layers behave like an ideal gas and stretch the WD radius. This
mechanism is more relevant as lower is the WD mass, as we can see for the hot DA
and DB WDs in Figure 1.1, which are classes of WDs. The cooling physics of white
dwarfs can be found in many textbooks as Shapiro and Teukolsky [146, Chapter 4] or
in a very useful review by Koester and Chanmugam [90].

1.1.5 Spectra and Classification

According to the WD formation, they are mainly composed of carbon (C) and oxy-
gen (O) in its core and have atmospheres dominated by hydrogen (H) and helium (He).
All other elements are only small traces, much less abundant than in the Sun. The rea-
son for this separated pattern is the strong gravitational field [145], because the present
lightest elements rapidly float to the surface once the white dwarf cools below about
Teff ∼ 100, 000K. This atmosphere is a residue of the star’s envelope in the red giant
phase and can also contain material accreted from the interstellar medium.

The system currently used to classify the WDs atmosphere was introduced by Sion
et al. [150] and has been subsequently revised several times [e.g., 61]. It classifies the
spectra by a symbol which consists of an initial D (“dwarf”), a letter describing the
primary feature of the spectrum followed by an optional sequence of letters describing
secondary features of the spectrum (as the presence of magnetic field (H) or variable
star (V)). The primary feature is classified as

• A: H lines present; no He I or metals present;

• B: He I lines; no H or metals present;

• C: continuous spectrum; no lines;

• O: He II strong; HeI or H present;

• Z: metal lines only; no H or He I lines;

• Q: carbon lines present;

• X: unclear or unclassifiable spectrum.

Therefore, WDs classified as DA have hydrogen-dominated atmospheres and make
up the majority (approximately 80%) of all observed white dwarfs. The next class in
number is of DBs (approximately 16%) which have helium-dominated atmospheres
[82]. The hot (Teff > 15, 000 K) DQ class (roughly 0.1%) have carbon-dominated atmo-
spheres [41]. Assuming that carbon and metals are not present, which spectral classifi-
cation is seen depends on the effective temperature. Between approximately 100,000 K
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to 45,000 K, the spectrum will be classified DO, dominated by singly ionized helium.
From 30,000 K to 12,000 K, the spectrum will be DB, showing neutral helium lines,
and below about 12,000 K, the spectrum will be featureless and classified DC. The Fig-
ure 1.2 represents the stellar structure of some different classifications following the
spectral type.

Figure 1.2: Artistical representation of the stellar structure of white dwarfs
with the spectral type DA, DB, DZ and DQ.

Between 22,000 K to 18,000 K, there is a small group of stars, the DQ white dwarfs
[40], which have C-dominated atmospheres. Their origin stills uncertain but a likely
scenario is that the carbon is dredged up from below the atmosphere once the convec-
tion zone reaches deep enough. More recently, Kepler et al. [83] reported a WD star
with oxygen 25 times more abundant than any other element in its atmosphere, and
the fact that no hydrogen or helium is so far unknown.

Beyond that, from the astrophysical point of view, the hot WDs are important: (i) to
elucidate the evolutionary links between WDs and their pre-white dwarf progenitors,
i.e., whether they are from the asymptotic giant branch (AGB), binary evolution, or
stellar mergers. (ii) to understand their significance in the process of chemical evolu-
tion of the Galaxy, because white dwarf progenitors lose their outer layers which are
carbon, nitrogen, and oxygen rich at the top of the asymptotic giant branch (AGB) (iii)
to improve our knowledge of type Ia supernova events, with important underlying
implications for cosmology [e.g., 58].

1.1.6 Binary systems

The main stellar systems are binary, and our Sun is an rather exception. The white
dwarfs born in binary systems can capture appreciable amounts of matter from their
companions. The accreted matter is compressed and heated, and its ignition can leads
the WD to a powerful explosion.
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Before accretion of material pushes a white dwarf close to the Chandrasekhar limit,
accreted hydrogen-rich material on the surface may ignite in a less destructive type of
thermonuclear explosion powered by hydrogen fusion, called nova. The WD surface
explosions can be repeated as long as the white dwarf’s core remains intact, and mass
transfer will occur gradually between novae explosions at a low rate, generating only
weak X-ray emission. The nova outburst will increase the apparent brightness of the
binary star system by 104 to 106 times (an increase in stellar magnitude of 10 to 15).

Carbon-oxygen white dwarfs accreting mass from a neighboring star may undergo
a runaway nuclear fusion reaction, which leads to a Type Ia supernova explosion in
which the white dwarf may be destroyed, before it reaches the limiting mass [e.g., 60].
If a white dwarf were to exceed the Chandrasekhar limit, and nuclear reactions did not
take place (neon or magnesium-rich core), the pressure exerted by electrons would no
longer be able to balance the force of gravity, and it would collapse into a denser object
called a neutron star [e.g., 23].

1.2 The Death in a Type Ia Supernova

Type Ia supernovae (SNe Ia) are among the most powerful explosions in the Uni-
verse and have high scientific values in cosmology, being used to determine the cosmo-
logical parameters due to their high luminosity and remarkable uniformity [64, 115].
They are also a predominant synthesis of chemical elements in their host galaxies, es-
pecially for the contribution of iron [104, 106, 105].

In the last decade, the interest in SNe Ia has risen dramatically with their application
to cosmological problem. Their unique capabilities as distance indicators on the cosmic
scale have pushed them as a bright constraint of ΛCDM cosmology, with almost all
Hubble constant determinations involving SNe Ia somehow. They provide the main
route to the current expansion rate [20] and the acceleration of the universe (Riess et
al. 1998a, Perlmutter et al. 1999).

1.2.1 Light Curves and Standardized Candles

Type I Supernovae exhibit a sudden rise in luminosity, up to a maximum visual
absolute magnitude of MV ∼ −19.3 (Lpeak ∼ 1010L�) in about 20 days. This phase is
followed by a steep decline in brightness by about 3 magnitudes in∼30 days, and later
by a second, smoother decline over a period of ∼70 days [167].

Peak luminosities depend basically on the amount of 56Ni synthesized, which can
be inferred from models of the late-time, nebular spectra and through application of
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Arnett’s rule [8]: the peak luminosity is proportional to the energy released by ra-
dioactive decays within the expanding ejecta. The Arnett’s rule yields a value of
Lpeak = 2× 1043(MNi/M�) erg/s such that the estimated 56Ni masses from some ob-
served SNe Ia range between 0.1− 1M� [156]. For the SN2011fe, the Arnett analytical
formula fits the light curve data and gives a M56Ni = 0.6M� for this supernova, see
Figure 1.3.

Another characteristic of SN I is the exponential tail of their light curve powered
by the radioactive decay chain 56Ni(β+ν)56Co(β+ν)56Fe [32], with two different slopes
attributed to the different half-lives of the decaying species, T1/2(

56Ni) = 6.1 days and
T1/2(

56Co) = 77.2 days [112]. It has been shown that the energy deposition of γ-rays
and positrons emitted from the decays of 56Ni and 56Co can produce a good fit to the
observed light curves of SN I [e.g., 36].
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Figure 1.3: Comparison of the bolometric luminosity from the analytic model
by Arnett [10] (orange solid line) and the SN2011fe data [132] (blue circles).

The observed photometric correlation between the peak luminosity and the timescale
over which the light curve decays from its maximum [133] is understood physically as
having both the luminosity and opacity being set by the mass of 56Ni synthesized in
the explosion [8, 81]. When corrected for the correlation between peak luminosity and
light curve decay timescale, the intrinsic dispersion in SNIa light curves is ∼ 0.14 mag
[79, 31].
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1.2.2 Nucleosynthesis and Spectra

Type Ia supernovae are spectroscopically identified by the absence of hydrogen
emission Balmer lines and the presence of a prominent P Cygni Si II emission feature
near maximum light, due to the doublet λλ 6347 and 6371 Å with the blue-shifted
absorption centered at about 6150 Å.

The optical spectrum at maximum light is dominated by the presence of neutral
or singly ionized lines of intermediate-mass elements (IMEs) as Si, Ca, Mg, S and O,
moving at high speeds (in the range of v ∼ 8000− 30000 km s−1). These absorptions
are consistent with a structure of outer layers mainly composed by intermediate-mass
elements [45]. Around two weeks after peak luminosity the spectrum is dominated
by Fe II lines, which indicates an iron-rich core. Finally, a month after maximum, the
spectrum is dominated by the presence of forbidden emission lines from Fe II, Fe III
and Co III. These signatures are represented in Figure 1.4.

Figure 1.4: Spectrophotometry of SN 2011fe. Major ion signatures in the first
two spectra are shown. The early and near-maximum spectra exhibit typical
strong low- to-intermediate-mass ion signatures (O I, Mg II, Si II, S II, Ca II)
at typical SN Ia ejection velocities. Two weeks after maximum, the spectrum
is dominated by numerous blends from iron-peak elements (Fe II, Co II) blue-
ward of about 5000 Å. The days at right represent the time since the maximum
in the light curve. Reproduced from [132].

The overall picture clearly stresses key nuclear physics issues: the presence of
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intermediate-mass elements in the early spectra, when only emission from the out-
ermost ejected layers is seen, reveals that the thermonuclear explosion did not com-
pletely incinerate the star. This, in turn, provides clues on the flame propagation
regime, since the presence of intermediate-mass elements rules out a pure detonation
(Section 1.2.5). In sharp contrast, when inner regions of the star become accessible, the
presence of the Fe lines clearly points toward complete nuclear processing of matter to
Fe-peak elements. Finally, the presence of Co lines at late stages strongly supports the
hypothesis of a light curve tail powered by the 56Ni decay.

1.2.3 Progenitor scenario

The absence of hydrogen lines into the spectra implies that the progenitor stars of
SN Ia should be hydrogen-deficient stars. Additionally, SNe Ia have been observed in
elliptical galaxies as well as in irregular and spiral galaxies, where they are not concen-
trated in spiral arms. These facts have led to the ideas that the progenitor stars of SNe
Ia are white dwarfs or helium stars [101].

We already know that WDs can be composed of He, C, O, Ne and Mg. However, a
pure helium WD with the initial mass smaller than∼ 0.45M� has no coherent scenario
with the explosion of SN Ia [70]: such system would explode during the accretion,
at MWD ∼ 0.7M� [120], leaving ejecta composed only of He and 56Ni, in contrast
to the observed spectral signatures of IME elements. White dwarfs with O-Ne-Mg-
rich material would rather collapse to a neutron star than explode because of the large
electron capture effects [e.g., 122, 23]. Therefore, the only viable channel are the carbon-
oxygen (CO) WDs.

Over the past four decades, two ways for leading a CO WD to an SN Ia explosion
have been discussed frequently:

(i) The single-degenerate (SD) scenario [e.g., 168, 118]. In this scenario, a CO WD ac-
cretes hydrogen- or helium-rich matter from a non-degenerate star to increase its
mass close to the Chandrasekhar limit and then results in a SN Ia explostion

(ii) The double-degenerate (DD) scenario [e.g., 69, 165]. In this scenario, a CO WD
merges with another CO WD, their merging of which is due to the gravitational
wave radiation which drives orbital inspiral to merger, resulting in a SN Ia explo-
sion.

These scenarios have good observational clues as commented in a excellent review
by Maoz et al. [102].
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Figure 1.5: Possible models of SN I in a single-degenerate scenario, depend-
ing on the initial CO WD mass (MC+O) and on the accretion rate helium-rich
material from the companion (Ṁ). Figure reproduced from [121].

1.2.4 Energetics of the Explosion

The energy required to power a supernova explosion∼ 1051 erg, obviously requires
a powerful source. Early models attributed it to the thermonuclear processing of CO-
rich material into Fe-peak elements inside a white dwarf [65]. Indeed, the incineration
of ∼ 1M� of a C-O mixture, which releases ∼ 1018 erg.g−1, accounts for the required
1051 erg. So SNe Ia arise from thermonuclear runaway explosions of carbon–oxygen
white dwarfs (CO WDs) in binaries, although their progenitor systems and explosion
mechanisms are still need to be understood.

Looking at energetics, the nuclear binding energy released by burning 0.6M� of C
and O into 56Ni is 1.1× 1051 erg. A comparable mass of C and O burning to intermediate-
mass elements releases additional energy. The gravitational binding energy of a WD
with mass close to MCh is ∼ 0.5× 1051 erg. The thermonuclear energy release is thus
sufficient to unbind the WD and to give the ejecta the kinetic energy indicated by the
observed expansion velocities, of order 104 km/s, i.e., ∼ 1051 erg.

Furthermore, the equation of state of the degenerate electron gas in a WD is just
what is needed for an unstable thermonuclear runaway once carbon is somehow ig-
nited. Since the carbon ignition threshold be crossed via an increase in some combi-
nation of density and temperature, the temperature rapidly increases due to exother-
mic carbon burning but the highly degenerate matter does not expand and cool as a
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classical gas would. As a result, an explosive burning front can, in principle, quickly
consume a WD. The density or temperature increase has generally been attributed to
the accumulation of accreted mass on the WD, up to the neighborhood of MCh, with a
corresponding decrease in radius. Specifically, the carbon in the core of a non-rotating
C WD ignites at a WD mass of ∼ 0.8M� [157]. The evidence that the bomb is always a
CO WD with M ∼ MCh would naturally explain the limited range of SN Ia luminosi-
ties, as employed by cosmology.

1.2.5 The state-of-art of Thermonuclear Explosions

Many types of combustion can occur in astrophysical problems, the particularity
depends on the time scales. Therefore, the combustion can be controlled in regular
process as hydrostatic burning (as in the sun core), but can be violent in explosive pro-
cess (as in supernovae). Our understanding of nucleosynthesis and flame propagation
in these explosive events is based on decades of modeling and nucleosynthesis calcu-
lations in spherically symmetric models [e.g., 7, 119, 118, 121, 167]. In recent years,
detailed estimates of the nucleosynthetic yields for multidimensional explosion mod-
els have become possible [e.g., 52, 142, 99].

In a thermonuclear supernova the explosion is triggered by carbon burning as a
thermal runaway, due to the high densities ∼ 109 g.cm−3. Because of the high sensi-
tivity of the 12C+12C reaction rate on temperature (≈ T12 at T ∼ 1010 K [9]), the carbon
burning length scale is microscopic and there are two mechanisms for the propagation
of these burning fronts [95]: the front propagates by shock compression, at a sonic or
supersonic speed as a detonation wave; the front propagates by thermal conduction as
a deflagration wave. In principle, both modes can be present in thermonuclear super-
nova depending on the ignition details.

One-dimensional numerical models of SNe Ia have been extensively used to test
general ideas about those possible explosion mechanisms. The most influential are the
phenomenological model W7 by Nomoto et al. [118, 119, 121, 21] and similar explo-
sions models [171, 117] which enjoy a great popularity as the explosive input model
for spectral calculations since they seemed to reproduce the element distribution fairly
accurately [e.g., 147, 173]. The burning speed in this model has, however, never been
understood in physical terms.

The initiation of the burning in the degenerate star remains, however, a puzzle. For
many years it was clear that a pure detonation [e.g., 7] of CO WDs burns the entire star
to nuclear statistical equilibrium and fail to synthesize the intermediate-mass elements
(IMEs), such as Ne, Mg, Si, S, and Ca, at high velocities needed to reproduce SN Ia
spectra [e.g., 20]. A pure deflagrations [e.g., 123] achieve adequate amounts of IMEs
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but produce less 56Ni masses, being considered a feasible mechanism only for the least
luminous events.

A possible alternative is the pre-expansion of the white dwarf with an initial defla-
gration stage followed by a detonation wave producing intermediate mass elements in
the low density material, as in the deflagration-to-detonation transition model from
Khokhlov et al. [85, 84]. The critical parameters in these models are the density at
the transition from deflagration to detonation, the pre-explosion density, the chemi-
cal composition (mostly C/O ratio), and the deflagration speed at the beginning of
the burning. The transition density has been proposed as the critical parameter for
the nucleosynthesis and hence the amount of Ni produced in the explosion. These
delayed-detonation models can reproduce some of the observations [16]. However,
their consistency has been questioned recently [116, 98].

Another different explosion mechanism on sub-Chandrasekhar mass white dwarfs
has been proposed [119, 171, 46, 149, 108]. The main idea is that the explosion must
be generated at the surface of the white dwarf due to a detonation of He near the
bottom of the accretion layer, depending on the accretion rate as represented in Figure
1.5. This model solved the progenitor problem by allowing explosions well below the
Chandrasekhar mass near the peak of the white dwarf mass distribution. Difficulties
here are the initiation of the explosion and the subsequent ignition of the whole star by
a pressure wave. Many of these calculations are still parametric and the details have to
be worked out [c.f., 155].

It is customary nowadays to explore several of these explosion models to explain
the observations [e.g., 155, 143, 100].

1.3 Objectives of this work

As motivated in the previous sections, the objectives of this work are concentrated
in the non-equilibrium phenomena that can be separated into two main groups: the
quasi-stationarity of the cooling process of white dwarfs; and possible retardation in
thermalization processes within the framework of in hydrodynamic descriptions of
thermonuclear supernovae.

The main questions to be answered here are:

(i) Can the thermal evolution of white dwarfs be modeled as a stationary state of
non-equilibrium thermodynamics?

(ii) What numerical method of hydrodynamics is appropriated to the study of tran-
sient process in thermonuclear supernova?
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(iii) Does the retardation effects modify the nuclear energy generation and the nu-
cleosynthesis of type Ia supernovae? How we can model them in a simplified
approach?

1.4 Organization of this thesis

This thesis is organized as follows. In Chapter 2 we introduce the physical de-
scription of non-equilibrium phenomena by the non-equilibrium thermodynamics. In
Chapter 3 we describe the astrophysical environment and present the ingredients for
the interior of white dwarfs and thermonuclear supernovae. The Chapter 4 is the more
technical and mathematical, where we present the numerical methods used to sim-
ulate the thermonuclear supernovae. In Chapter 5, we present a phenomenological
approach to the thermal evolution as a stationary state for white dwarfs, and we ob-
tain a semi-empirical effective temperature-mass-radius relation for hot white dwarfs
recent data. In Chapter 6 we introduce a model for non-equilibrium delayed thermal-
ization in thermonuclear supernovae and analyze its effects in the nucleosynthesis and
nuclear energy releasing. Finally, in Chapter 7, we remark our work and reflect on
future applications of the present results.
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Chapter 2

Non-equilibrium Thermodynamics

Nothing is more practical than a good theory.

– L. Boltzmann (1844-1906)

We live in a Universe that is not in thermodynamic equilibrium. The 2.8 K cosmic
microwave background thermal radiation that fills the universe is not in thermal equi-
librium with the matter in the galaxies. On a smaller scale, the Earth, its atmosphere,
biosphere and the oceans are out of equilibrium state due to the constant influx of en-
ergy from the Sun. In resume, we encounter non-equilibrium phenomena everywhere
while equilibrium systems are the exception.

2.1 Local Thermodynamic Equilibrium Hypothesis

Equilibrium thermodynamics describes ideal processes taking place at infinitely
slow rate, considered as a sequence of equilibrium states. For arbitrary processes, it
may only compare the initial and final equilibrium states but it cannot describes the
processes themselves. But in the more realistic situations involving processes with
finite velocities or inhomogeneous situations, the basic physical quantities like mass,
temperature, pressure, and others are not only allowed to change from place to place,
but also in the course of time.

A macroscopic system can be thought as composed by cells, which are sufficiently
large to neglect the microscopic fluctuations but sufficiently small so that equilibrium is
realized to a good approximation in each individual cell. In other words, the time and
length scales associated with the macroscopic inhomogeneities, e.g., of the pressure∣∣∣∣ 1p ∂p

∂t

∣∣∣∣ ' 1
τp

and
∣∣∣∣ 1p∇p

∣∣∣∣ ' 1
λp

(2.1)
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must be much larger than the microscopic scales, as typical collision time τmicro and
typical mean free path λmicro,

τp � τmicro and λp � λmicro (2.2)

to consider that matter within the cell is locally in equilibrium. This approach com-
poses the most important hypothesis underlying the non-equilibrium phenomena, the
local thermodynamic equilibrium (LTE) hypothesis: the local and instantaneous relations
between thermodynamics quantities in a system out of equilibrium are the same as for a uni-
form system in equilibrium. The concept of locally is misleading, since the spatial region
considered infinitesimal is physical fluid element that have a lot of particles inside it,
but it is small enough to (2.2) become valid.

A important consequence of the LTE hypothesis is that all the thermodynamic
quantities well defined in equilibrium as internal energy, temperature, chemical po-
tential, etc. are univocally defined out of equilibrium and they may vary with time
and space. All the intensive thermodynamic quantities are now functions of the fluid
element position and time as

T = T(x, t), p = p(x, t), µk = µk(x, t), (2.3)

where T is the equilibrium temperature, p is the equilibrium pressure, and µk the ther-
modynamic or chemical potential of component k. The extensive variables are replaced
by their densities

u = u(x, t), ρ = ρ(x, t), nk = nk(x, t). (2.4)

where u is the internal energy per unit mass, ρ the mass density, and nk the number
component k per unit mass.

From equilibrium thermodynamics we know that the entropy s is, for a system in
equilibrium, a well-defined function of the various parameters which are necessary to
define the macroscopic state of the system completely. Considering the macroscopic
state defined by u, ρ and nk, we get

s = s(u, ρ, nk). (2.5)

Although the total system is not in equilibrium, there is within small fluid elements
a state of local equilibrium for which the local entropy s is the same function of u, ρ
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and nk as in real equilibrium. In such a way the Gibbs relation

T
ds
dt

=
du
dt

+
p
ρ2

dρ

dt
−

N

∑
k=1

µk
dnk
dt

(2.6)

remains valid within the fluid element. The relation (2.6) to the equilibrium entropy,
but when there are irreversible process inside the fluid element the concept of equilib-
rium entropy has to be modified or extended.

2.2 Conservation Laws

When a system is disturbed from its equilibrium state, quantities which are not
conserved decay rapidly to their equilibrium values while the quantities which are
conserved remain out of equilibrium. The densities of conserved quantities character-
ize the non-equilibrium behavior of the fluid after long times [141]. The equations of
motion for the densities of the conserved quantities are the hydrodynamic equations,
which describe the long-wavelength (low-frequency) phenomena in a large variety of
systems, including dilute gases, liquids, solids, superfluids and chemically reacting
systems [e.g., 95].

Based on the LTE hypothesis, the first law of thermodynamics applied to a fluid
element

dE
dt

=
dW
dt

+
dQ
dt

(2.7)

express the change of total energy E due to the external or internal work W and heat
Q. More explicitly, the total energy is equal to the sum of the internal energy U and the
kinetic energy K, i.e., E = K + U and it is given by

U =
∫

V(t)
ρu dV and K =

1
2

∫
V(t)

ρv · v dV, (2.8)

with v being the velocity field.

The rate of work done by the body forces f and the contact forces t is given by

dW
dt

= −
∫

A(t)
π · v dA +

∫
V(t)

ρ f · v dV, (2.9)

where π is related to the stress tensor P by the Cauchy’s relation π = −P · n [e.g., 110,
§ 22].
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The rate of heat exchange is given by

dQ
dt

= −
∫

A(t)
q · n dA, (2.10)

and q is the heat flux vector.

Using the Reynolds transport theorem1 and substituting (2.8), (2.9) and (2.10) in the
first law (2.7), we can obtain the local form of the energy balance equation

ρ(u̇ + v · q̇) +
(

u +
1
2

v · v
)
(ρ̇ + ρ∇ · v) = −∇ · q−Π : ∇v− v · (∇ · P) + ρ f · v,

(2.12)
where the upper dot stands for the Lagrangian time derivative, i.e., u̇ ≡ du/dt. Ac-
cording to the Galileo principle, (2.12) must be invariant for inertial frames, i.e., must
be invariant with respect to the transformation v→ v+ v0, where v0 is an uniform and
constant velocity. Making this transformation and subtracting the (2.12), we obtain

1
2

v0 · v0(ρ̇ + ρ∇ · v) + v0 · [(ρ̇ + ρ∇ · v) + ρv̇ +∇ · P− ρ f ] = 0. (2.13)

This relation should be independent of the choice of v0, so that the relations

ρ̇ = −ρ∇ · v, (2.14)

ρv̇ = −∇ · P + ρ f , (2.15)

could be satisfied independently. With these results, (2.12) reduces to

ρu̇ = −∇ · q− P : ∇v. (2.16)

Relations (2.14), (2.15) and (2.16) are the laws of balance of mass, momentum, and
internal energy respectively, written in the Lagrangian viewpoint, which consider a
fluid element in time at a point that moves with the fluid at velocity v. The Lagrangian

1Let A(x, t) be any single-valued scalar, vector, or tensor field, and choose V(t) to be some finite
volume composed of several fluid elements. Then, clearly A(t) =

∫
V A(x, t) dV is a defined function of

time. Its time derivative can be write

dA
dt

=
∫
V

(
dA
dt

+ A∇ · v
)

dV (2.11)

where the first term in parenthesis came from the direct derivative of A and the second term came from
the change in the fluid element volume [e.g., 110, § 18]
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time derivative operator is related to the usual derivative operators by

d
dt

=
∂

∂t
+ v ·∇ (2.17)

2.2.1 Viscous and Heat-Conducting Fluids

All real fluids have internal processes that may lead to transport of momentum and
energy from one fluid element to another on a microscopic level.

The momentum transport mechanisms give rise to internal forces which contribute
to the stress tensor P. The form of Pij may be deduced from the following physical
considerations: (i) internal forces exist only when one element of fluid moves relative
to another; hence viscous terms must depend on the space derivatives of the velocity
field, ∂vi/∂xj. (ii) the stress tensor reduce to its hydrostatic form when fluid is at rest
or translate uniformly (Galilean transformation). We therefore write

Pij = −pδij + Πij (2.18)

where Πij is the viscous stress tensor, which accounts for the internal frictional forces
in the flow. (iii) viscous forces must be zero within an element of fluid in rigid rotation
(because there is no slippage then). The most general symmetrical tensor of rank two
satisfying the above conditions and write in a convenient form is

Πij = η

(
∂vi

∂xj
+

∂vj

∂xi
− 2

3
δij

∂vk
∂xk

)
+ ζδij

∂vk
∂xk

(2.19)

where η is identified as the coefficient of shear viscosity and ζ is known as the coeffi-
cient of bulk viscosity.

The balance of momentum equation (2.15) is extremely general because it makes
no particular assumptions about the form of the stress tensor. If we specialize this
equation to the case of a viscous fluid by using the equations (2.18) and (2.19), we
obtain the Navier-Stokes equation, which are the equations employed to describe the
flow of a viscous fluid. We find by direct substitution,

ρ
dv
dt

= f −∇p + η∇2v + (ζ + 1
3 η)∇(∇ · v) (2.20)

For a heat-conducting fluid, apart from the energy transport mechanisms due to
the momentum transport there is energy transport coming from the energy conducting
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from one fluid element in the flow to another. Therefore, the (2.16) can be write as

ρu̇ = ∇ · (λ∇T)− p∇ · v + 2η∇v : ∇v + ζ(∇ · v)2. (2.21)

The Navier-Stokes equation and its extension to the relativistic case can be obtained
by a more fundamental derivation from the relativistic Boltzmann equation, as pre-
sented by Denicol et al. [39, 38].

2.2.2 Reactive Fluids

A system composed by n different constituents, each species k in the fluid may be
characterized by the atomic number Zk, the mass number Ak and its mass density ρk.
The balance equation of species density can be write as

ρ̇k = −ρk∇ · vk +
r

∑
j=1

νkjΛk (2.22)

where vk is the velocity of species k, νkjΛk is a source term giving the production (or
destruction) of k per unit volume by the j-th reaction, and r is the number of reactions
involving the component k.

Since mass is conserved in each separate chemical reaction we have

n

∑
k=1

νkj = 0, (2.23)

and hence the equation (2.22) summed over all substances k returns the conservation
of mass (2.14). The total density may be now described by

ρ =
n

∑
k=1

ρk (2.24)

and the center-of-mass velocity by

v =
∑n

k=1 ρkvk

ρ
(2.25)

The abundance of component k can be expressed by the mass fraction Xk, defined
as

Xk =
ρk
ρ

(2.26)

subject to the normalization condition ∑n
k=1 Xk = 1. In terms of Xk equations (2.22)
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take the simple form

ρ
dXk
dt

= −∇ · jk +
r

∑
j=1

νkjΛk, (2.27)

where jk = ρk(vk − v) is the diffusion flow with respect to the barycentric motion. We
note that it follows from (2.25) that ∑n

k=1 jk = 0, which means that only n− 1 of the n
diffusion flows are independent.

The external force term f in (2.15) must be modified since the external force may
vary for different species (for example, the electromagnetic force in different ions), i.e.,
f k is the external force applied to the component k, so we must write the balance of
momentum as

ρ
dv
dt

= −∇ · P +
n

∑
k=1

ρk f k, (2.28)

and the balance of internal energy (2.16) now has to add this external force term in the
form

ρu̇ = −∇ · q− P : ∇v +
n

∑
k=1

jk · f k (2.29)

and when the external force is identical for all species, i.e., f k = f , the last parcel (2.29)
in vanishes.

2.3 Entropy Production

An important question is whether a precise definition can be attached to the notion
of entropy when the system is out of equilibrium. However, thanks to the local equi-
librium hypothesis, entropy remains a valuable state function even in non-equilibrium
situations.

The change of the total entropy with the time in a region is the sum of the internal
entropy generation inside this region and the total entropy flux exchanged with the
neighborhood through the region boundary, i.e.,

d
dt

∫
V

ρs dV =
∫
V

εs dV −
∫

A
js · dA, (2.30)

with the entropy flux js and the rate of entropy production εs conveniently defined.
Using the Gauss and Reynolds theorems, we write the following local balance relation
of entropy

ρ
ds
dt

= εs −∇ · js. (2.31)
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The second law of thermodynamics applied to a closed system implies that

d
dt

∫
V

ρs dV ≥ 0, (2.32)

and since there is no change of entropy with the external environment the (2.32) results
in

εs ≥ 0 (2.33)

where the equality holds for reversible processes or for equilibrium states.

2.3.1 Entropy Production in Viscous, Heat-Conducting and Reactive

Fluids

In order to find the explicit form of the entropy balance equation (2.31) for a viscous,
heat-conducting and reactive fluid, we have to insert the appropriate combination of
the balance of internal energy for viscous and heat-conducting fluid (2.21) and for re-
active fluid (2.29) into the Gibbs relation (2.6). This gives

ρ
ds
dt

= − 1
T
∇ · q− 1

T
Π : ∇v +

1
T

n

∑
k=1

jk · f k +
1
T

n

∑
k=1

µk∇ · jk −
1
T

r

∑
j=1

Λj Aj (2.34)

where we have introduced the chemical affinities of the r reactions for the species j
defined by

Aj =
r

∑
k=1

νkjµk (2.35)

and used the (2.22) to simplify the nk = NAρk/Ak derivative.
From comparison with (2.31) it follows that the expressions for the entropy flux and

the entropy production are given by

js =
1
T

(
q−

n

∑
k=1

µk jk

)
(2.36)

εs = −
1

T2 q ·∇T − 1
T

Π : ∇v− 1
T

n

∑
k=1

jk ·
[

T∇
(µk

T

)
− f k

]
− 1

T

r

∑
j=1

Λj Aj (2.37)

Let us consider in more detail the expressions (2.36) and (2.37). The first formula
shows for open systems the entropy flow consists of two parts: one is the strict heat
flow q, the other is connected with the diffusion flows of matter jk. The second formula
demonstrates that the entropy production contains four different contributions. The
first term at the right-hand side of (2.37) arises from heat conduction, the second is
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connected to the gradients of the velocity field, the third from diffusion, and the fourth
is due to chemical reactions. The structure of the expression for εs is that of a bilinear
form: it consists of a sum of products of two factors. One of these factors in each
term is a flow quantity (heat flow, diffusion flow, momentum of a viscous flow, and
chemical "flow" reactions) already introduced in the conservation laws of Section 2.2.
The other factor in each term is related to a gradient of an intensive state variable
(gradients of temperature, chemical potential and velocity) and can also be a difference
of thermodynamic state variables, e.g., the chemical affinity Aj. In terms of them the
source of entropy can be written as

εs = ∑
α

JαFα (2.38)

and in equilibrium state each individual flux and force vanishes.

2.3.2 Linear Phenomenological Coefficients

The non-equilibrium processes in nature are very often described using the so-
called linear non-equilibrium thermodynamics. This theory has been developed since
the pioneering works by Onsager [127, 126] and Prigogine [140], who won the Nobel
Prize in Chemistry in 1968 and 1977, respectively. Other important and influential con-
tributions are also found in the works of Meixner and Reik [109], de Groot and Mazur
[37], Gyarmati [54], and many others, which have enlarged the theory to a wider num-
ber of applications and have clarified its foundations and its limits of validity.

The fluxes are unknown quantities, in contrast to the forces, which are known func-
tions of the state variables or their gradients. It has been found experimentally that
fluxes and forces have a relationship with each other. In general, a given flux does
not only depend on its own conjugated force but my depend on the every set of forces
acting on the system. Furthermore, the flux may depend on all thermodynamic state
variables ρ, u and nk as

Jα = Jα(F1, F2, . . . , Fα, . . . , ρ, u, nk). (2.39)

A relation like (2.39) among fluxes and forces is called a constitutive equation,
which express specific properties of the material in an irreversible process. An ex-
pansion around the equilibrium values Jeq

α = 0 and Feq
α = 0 gives

Jα = ∑
β

(
∂Jα

∂Fβ

)
eq

Fβ +O(FβFγ) + . . . (2.40)
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and keeping just the first terms we find

Jα = ∑
β

LαβFβ (2.41)

setting

Lαβ =

(
∂Jα

∂Xβ

)
eq

(2.42)

which are phenomenological coefficients and depend generally on ρ, u, and nk. This
idea is based upon the empirical laws (of J. Fourier [48], G. Ohm [125], A. Fick [44],
and others) that have a linear relationship between the thermodynamic fluxes Jα (e.g.,
the heat flux) and the thermodynamic forces Fα (e.g., the temperature gradient). By
substitution of (2.41) into (2.38) we get

εs = ∑
αβ

LαβFαFβ ≥ 0 (2.43)

The fact that εs ≥ 0 implies the necessary and sufficient conditions that the determi-
nant of the symmetric part of Lαβ and all its principal minors are positive, in particular,

Lαα ≥ 0, (2.44)

LααLββ ≥ 1
4(Lαβ + Lβα). (2.45)

These coefficients, in Navier-Stokes theory, are linearly proportional to the thermo-
dynamic forces, such as gradients of fluid velocity, temperature, and chemical poten-
tial. The constants of proportionality are the bulk viscosity, the shear viscosity, and
the heat conductivity and they are all semi-positive definite quantities. Navier-Stokes
theory can be extended by considering higher-order gradients of fluid velocity, temper-
ature, or chemical potential, leading to the Burnett equations (including second-order
gradients), the super-Burnett equations (including third-order gradients) etc. [22].

2.4 Non-equilibrium Stationary States

Stationary states are state states in which the state parameters are independent of
time. Such state cannot be confused with an equilibrium state, which is characterized
by a uniform temperature field, no heat flow, and a zero entropy production. These
stationary states can be either equilibrium or non-equilibrium states depending on the
boundary conditions imposed on the system.
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2.4.1 Mechanical Equilibrium

The mechanical equilibrium state is the state in which the acceleration dv/dt van-
ishes. This concept of mechanical equilibrium may be extended to consider states in
which not only the acceleration vanishes, but in which velocity gradients may be ne-
glected. For such states the equation of motion gets the form

0 = −∇p + ∑
k

ρk f k. (2.46)

In a number of important cases the mechanical equilibrium state described by (2.46)
is established very quickly in comparison to other thermodynamic processes. For in-
stance, in the cases of diffusion or thermal diffusion phenomena in closed system can
safely assume that a state of mechanical equilibrium is a sufficient approximation [see,
37, Ch. V, § 2].

2.4.2 Thermal Stationary State

The thermal stationary state is the state in which the entropy production ds/dt
vanishes. For such states the equation of entropy balance gets the form

0 = ∇ · js + εs. (2.47)

More explicitly, with considerable generality, we might write

js = jrad + jcond + jconv + jmass (2.48)

where the first three terms on the right denote the radiative, conductive, and convec-
tive fluxes, respectively. The last term jmass represents a flux of energy resulting from
the net transfer of matter.

We might also write
εs = εrea + εvis (2.49)

where the first term denote the rates of entropy production per unit mass from reac-
tions, and the second term from viscous heating arising from fluid motions.

It should be noted that even in the case without entropy sources (εs = 0), the sys-
tem will not be precisely in thermal equilibrium. In the simplest case, the ∇ · js = 0
becomes the Poisson’s equation and its solution depends on the boundary conditions.
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2.5 Relaxation from Near-Equilibrium States

2.5.1 Motivation

Onsager [127] noted that Fourier’s model contradicts the principle of microscopic
reversibility, but it may be removed when we recognize that Fourier’s law is only an
approximate description of the process of conduction, neglecting the time needed for
acceleration of the heat flow. In other words, Fourier’s law has an nonphysical prop-
erty: if a sudden temperature perturbation is applied at one point in the solid, it will
be felt instantaneously and everywhere at distant points. Moreover, Fourier’s model
is not adequate for describing heat transport at very high frequencies and short wave-
lengths, when the phenomena are very fast or very steep (as ultrasound propagation,
heat propagation at low temperatures, shock waves, etc.) or when the relaxation times
of the fluxes are very long (as in superfluids).

Historically, Maxwell [107] and Cattaneo [26] were the first to introduce inertia in
transport equations to eliminate these anomalies. They proposed a damped version of
Fourier’s law by introducing a heat flux relaxation term, namely

∂q
∂t

= − 1
τq

(q + λ∇T) . (2.50)

The relaxation time τq is the response time for the onset of heat flow after a temper-
ature gradient is suddenly imposed. When τq is negligible or when the time variation
of the heat flux is slow, (2.50) reduces to Fourier’s law. The expression for the entropy
production (2.37) is now written as

εs =
λ

T2 (∇T)2 +
τq

T2
∂q
∂t
·∇T (2.51)

which is no longer definite positive because of the second term.

2.5.2 Relaxation Kernel

To avoid this problem, the inertial effects can be extended by a relaxation kernel
which relates the heat flux with the temperature gradient

q(t) =
∫ t

−∞
G(t, t′; τ)[−λ∇T](t′) dt′, (2.52)

and for G(t, t′; τ) = exp [(t− t′)/τ]/τ we recover the Maxwell-Cattaneo equation
(2.50).
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In the linear non-equilibrium thermodynamic, other thermodynamic fluxes and
forces can be present and the generalization of the (2.52) for (2.41) will be

Jα(t) = ∑
β

∫ t

−∞
G(t, t′; τβ)Lαβ(t′)Fβ(t′) dt′, (2.53)

with the entropy source term still given by (2.38). Of course, this entropy source
term remains no longer definite positive when G(t, t′; τ) = exp [(t− t′)/τ]/τ as in
the Maxwell-Cattaneo framework.

The (2.53) introduce new parameters τβ which can be associated with the relaxation
time of the thermodynamic forces to appear as thermodynamic fluxes in the system.
We will use this framework to treat transient phenomena with near-equilibrium ther-
modynamic.

2.6 Final Considerations

We have formulated the partial differential equations governing the flow of an vis-
cous, heat-conducting and reactive fluid: the balance equations for mass (2.14), mo-
mentum (2.15), chemical abundances (2.22), and entropy (2.31). These equations are
related to the following dependent variables: the density ρ, the specific entropy s, the
velocity field v and the density of species nk.

To close the system we require the constitutive equations, the transport coefficients
and the reaction rates that specify the thermodynamic properties, the intensity of the
transport phenomena and the change of the chemical abundances, respectively. In
general any thermodynamic quantity can be expressed as a function of two variables.
Therefore, all quantities are written as function of mass density ρ and temperature
T as the equation of state p = p(ρ, T) and the thermodynamic entropy s = s(ρ, T).
The transport coefficients are condensed in a single opacity coefficient, κ = κ(ρ, T).
The reaction rates and the heat generation are given as Λ = Λ(ρ, T) and ε = ε(ρ, T).
All these quantities and relations will be presented in Chapter 3 for the stellar plasma
which we will consider in this work.

We then have a total of five equations and five unknowns variables2. This system of
equations can be solved for the spatial variation of all unknowns variables as a function
of time. Besides that, we have to specify the initial conditions that determine the state
and motion of the fluid at a particular time, plus a set of boundary conditions which
constrains the flow. The approach used to solve this problem is presented in Chapter 4

2Of course, velocity is a vector and it has 3 spatial component. We know it. But we simplify the
discussion to just ρ, s, v and nk as a single variable each one.
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where we discuss the additional physics needed in the context of white dwarfs and
thermonuclear supernovae.
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Chapter 3

Astrophysical Contents

Our sun, by the way... may become a white dwarf
some day but apparently will never become a super-
nova.

– Isaac Asimov (1919-1992)

After the establishment of the theoretical fundamentals of hydrodynamics as a non-
equilibrium phenomena in the last chapter we now turn to the synthesis of the astro-
physics of white dwarf matter focusing on the practical aspects relevant to the objective
of this work: the equation of state, the transport coefficients and the fusion reaction
rates.

3.1 Equation of state: How to hold the star?

The equation of state of white dwarf matter is essentially governed by the degen-
erate electron gas. Further contributions come from the photon gas, the nuclei, and
from electron-positron pair creation at high temperatures. We will neglect solidifica-
tion effects, allowing the treatment of the nuclei as an ideal gas. Corrections due to
Coulomb interaction between electrons and baryons are only marginal and thus will
be neglected here. This leads to the following equation of state:

p(ρ, T) = prad + pion + pele + ppos, (3.1)

where the subscripts rad, ion, ele and pos represent the contributions due to radiation,
ions, electrons and positrons, respectively.
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3.1.1 Radiation gas

The radiation parcel is that of a thermal radiation in local thermodynamic equilib-
rium with matter, whose the pressure and specific internal energy are

prad =
aT4

3
(3.2)

urad =
3prad

ρ
(3.3)

where a is the radiation density constant.

3.1.2 Ionized ideal gas

For a completely ionized material, the number density of free ions in the material
is given by

nion = ρNA ∑
k

Xk
Ak

(3.4)

where Xk is the mass fraction of a given isotope. We can define the mean molecular
weight per ion µ as

1
µ
= ∑

k

Xk
Ak

. (3.5)

The ion parcel is that of an ideal gas, whose the pressure and specific internal energy
are

pion = nionkT (3.6)

uion =
3
2

pion

ρ
(3.7)

where k is the Boltzmann’s constant.

3.1.3 Semi-degenerate fermion gas

According to the Pauli principle, each quantum level is either occupied by one elec-
tron or is vacant. Thus, non-interacting electrons (or only weakly interacting) obey
the Fermi-Dirac distribution function [e.g., 96]. From statistical mechanics, the number
density of electrons having momenta between p and p + dp is

nele(p)dp =
8π2dp

h3
1

e−(µ+ε)/kBT + 1
=

8π2dp
h3 q(η, x), (3.8)
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Figure 3.1: (a) The occupation number q for electrons as a function of x =
ε/kBT. (b) The distribution function ne(p) for great degeneracy (red line) and
for a complete degeneracy (darker line).

where x = ε/kBT and η = µ/kB, with µ being the chemical potential and ε the kinetic
energy (not including the rest mass energy). The Figure 3.1a represents the occupation
number q for electrons as a function of x for different values of η.

A most significant property of a electron gas is that at T = 0 (i.e., a completely
degenerate gas1), nele(p) > 0 for p ≤ pF and nele(p) = 0 otherwise, so that particle
motion no ceases at T = 0. This is completely different of a ideal gas, which the parti-
cle motion ceases at the absolute zero of temperature. Therefore, in a white dwarf star
at zero temperature (or temperature below the Fermi energy) the velocities of the elec-
trons are great enough to supply the pressure required to keep the star from collapsing
under its own gravity.

As presented by Cox & Giuli [166] (where many useful tables and others references
can be found) the general expressions for electron density, pressure, internal energy
can be write, in terms of dimensionless variables η and the relativistic parameter β =

kBT/mec2, in parameterized form

nele =
8π
√

2
h3 m3

e c3β3/2 [F1/2(η, β) + βF3/2(η, β)] (3.9)

pele =
16π
√

2
3h3 m4

e c5β5/2 [F3/2(η, β) + (1/2)βF5/2(η, β)] (3.10)

uele =
8π
√

2
h3

m4
e c5

ρ
β5/2 [F3/2(η, β) + βF5/2(η, β)] (3.11)

1Nuclei and nucleons have effects of degeneracy in most higher densities, about ∼ 1014 g/cm3 due
to their high mass.
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where pele and uele are the electrons pressure and the electrons energy density. The
functions Fk are the generalized Fermi-Dirac integrals defined by

Fk(η, β) =
∫ ∞

0

xk(1 + (β/2)x)1/2

exp (−η + x) + 1
dx (3.12)

and can be calculated from approximated expansions for high- and non-degenerate
regimes or numerically, as presented in Appendix A.
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Figure 3.2: Mapping of degenerate phases and relativistic regimes for an elec-
tron gas.

At sufficiently high temperatures (& 109 K) an appreciable fraction of photons in
the Planckian distribution will have energies in excess of 2mec2, the necessary energy
to create an electron-positron (e±) pair. Additionally, the finite cross section for pair
production and annihilation, represented by the reaction

e− + e+ � γ, (3.13)

cause the equilibrium concentration of e± pairs be very large, especially at very high
temperatures. The condition for chemical equilibrium establishes that

η + η+ = 0 (3.14)

since ηpho = 0 and η+ is the reduced chemical potential for positrons. The expression
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for the number density of positrons is then

npos =
8π

h3

∫ ∞

0

p2dp
e+η+(2mc2+ε)/kBT + 1

(3.15)

where we add to the positron energy ε the pair rest mass energy 2mc2.

Just as before, the general expressions for the number density, the pressure and the
specific internal energy of positrons can be written in the parameterized form

npos =
8π
√

2
h3 m3

e c3β3/2 [F1/2(−η − 2/β, β) + βF3/2(−η − 2/β, β)] , (3.16)

ppos =
16π
√

2
3h3 m4

e c5β5/2 [F3/2(−η − 2/β, β) + (β/2)F5/2(−η − 2/β, β)] , (3.17)

upos =
8π
√

2
h3

m4
e c5

ρ
β5/2 [F3/2(−η − 2/β, β) + βF5/2(−η − 2/β, β)] +

2mc2npos

ρ
. (3.18)

If ions are present in the mixture, then some electrons present are ionization elec-
trons and others are from e± pairs. The requirement of electron neutrality leads to the
condition

n(m)
ele = NAρ/µe = nele − npos (3.19)

which permits η to be calculated as a function of n(m)
ele (or ρ) and T using the Eq.(3.9)

and Eq.(3.16). Then η = η(n(m)
ele , T) is given, in general, in tabular form by numeri-

cal calculations. The mean molecular weight per free electron µe present in (3.19) is
defined by

1
µe

= ∑
k

XkZk
Ak

(3.20)

The various regions of degeneracy of the electron gas on the ρ − T plane are rep-
resented in Figure 3.2. The lines of constant η correspond to the band demarcation
between non-degenerate and degenerate phases, whose the range −2.6 ≤ η ≤ 4.4
(solid lines) represent the partial degeneracy. The regions of non-degenerate and de-
generate phases, as well as non-relativistic and relativistic regime, are indicated ex-
plicitly. The horizontal line along which β = kBT/mc2 = 1 divide the N.R. (β � 1)
from E.R. (β � 1) regimes in the non-degenerate phase. The vertical line along which
y = pF/mc = 1 divide the N.R. (y � 1) from E.R. (y � 1) regimes in the degenerate
phase. The location of the white dwarf cores is also indicated roughly in Figure 3.2.
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3.2 Opacities: How does heat propagate?

In the stellar plasma, the internal energy may be transported independently of the
flow of the medium. Under the conditions encountered in WD cores, the transport of
energy by photons (radiative) and electrons (conductive) may be the dominant mech-
anisms.

In the radiative diffusion approximation [e.g., 56, Ch. 4], the radiative flux at any
point is related to the photon energy density uν by the Fick’s law

jν = −1
3

c
κνρ

∇uν, (3.21)

with the energy density given by the Planck photon frequency distribution, since pho-
tons are in LTE with the material temperature T, written as

uν =
4π

c
Bν(T) =

4π

c
2hν3

c2

(
1

ehν/kBT − 1

)
. (3.22)

The radiative flux integrated over all frequencies is then

qrad =
∫ ∞

0
jν dν = −4π

3ρ
∇T

∫ ∞

0

1
κν

dBν

dT
dν, (3.23)

and with the help of the Rosseland mean radiative opacity definition, i.e., the average
opacity harmonically weighted over the temperature derivative of the Planck curve,

1
κrad

=

∫ ∞
0

1
κν

dBν
dT dν∫ ∞

0
dBν
dT dν

=
π

ac
1

T3

∫ ∞

0

1
κν

dBν

dT
dν, (3.24)

the radiative flux can be expressed as

qrad = − 4acT3

3κradρ
∇T. (3.25)

Heat transported by electrons is defined by Fourier’s Law, which states that heat
flows in a medium from higher to lower temperatures at a rate proportional to the
temperature gradient

qcond = −λe∇T (3.26)

where λe is the thermal conductivity by the electrons in the medium. To put this equa-
tion in the form analogous to the radiative diffusion equation, one defines the electron
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conductive opacity, κcond, such that

κcond =
4acT3

3λeρ
, (3.27)

and the conductive heat flow is then

qrad = − 4acT3

3κcondρ
∇T. (3.28)

Since the total energy flux is the sum of the radiative (3.25) and heat flux by electron
conduction (3.28),

q = −4acT3

3κtotρ
∇T, (3.29)

the energy transport by electron conduction and by photon radiation are competing
processes, with the most energy transported by the process encountering the smallest
resistance. Therefore the total opacity of stellar matter [e.g., 103] can be written as

1
κtot

=
1

κrad
+

1
κcond

, (3.30)

where κrad and κcond are the radiative and conductive opacities, respectively. The Fig-
ure 3.3 represents the total κtot, the radiative κrad (blue dashed line) and conductive κcond

opacities as a function of density ρ for temperature T = 108 K and pure carbon com-
position. The radiative opacity is dominant at low density and the conductive opacity
is dominant at high densities.

A good description and review of opacity can be seen in Ref.[68].

3.2.1 Radiation Opacity

For typical stellar densities and temperatures, the main radiative processes are:
the scattering of photons by free electrons, in Thomson or Compton scattering; and
the absorption of photons by free electrons and electrons bound in atoms, as inverse
bremsstrahlung, photoelectric absorption and line absorption. In much higher densi-
ties and temperatures, as in compact stars or supernovae, other processes such as pair
production and photo-nuclear absorption may become important.

At low density and low temperature, the fully ionized gas has opacity dominated
by Thompson electron scattering. This is given for electron or photon with thermal en-
ergies below the rest mass energy of electron where the Thomson scattering describes



38

−15

−10

−5

0

5

10

15

−4 −2 0 2 4 6 8 10 12

κcond

κrad

κtot

lo
g
κ
(c
m

2
g−

1
)

log ρ (g cm−3)

Figure 3.3: The total opacity κtot (red solid line) as a function of density ρ for
temperature T = 108 K and pure carbon composition. The radiative κrad (blue
dashed line) and conductive κcond (orange dashed line) opacity are represented as
reference.

the process very well. The opacity in this case is

κes =
neσe

ρ
(3.31)

where σe is the Thomson cross-section of the electron

σe =
8π

3

(
e2

mec2

)
(3.32)

and ne is the electron density given by (3.19). The associated electron scattering opacity
is then

κes = NAσe/µe = 0.4/µe cm2 g−1 (3.33)

in cgs units.

Indeed, free electrons can absorb a photon in the vicinity of an ion, the inverse of
normal bremsstrahlung process. The opacity due to free-free electronic transitions can
be approximated with the Kramers formula, κ = κ0ρnT−s, more explicitly as

κff ≈ 1023 Z̄2

µeµ
ρT−7/2 (3.34)
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where Z̄ is the mean charge of the stellar plasma.

Therefore, the total radiative opacity may be well approximated by the following
sum

κrad = κes + κff, (3.35)

because each parcel contributes incoherently.

3.2.2 Conductive Opacities

At very high density and low temperature, as in WD degenerate core, the radiative
opacity becomes very high and the electron thermal conductivity becomes a much
more efficient heat carrier.

Using the kinetic method [175] in which the effective electron scattering rate ν does
not depend on the electron velocity, one can write

λe =
π2nekBT

3m∗e ν
(3.36)

where m∗e = meγ, and γ =
√

1 + (pF/mec)2 is the relativistic density parameter.

In a fully ionized plasma, ν is determined by electron-ion and electron-electron
Coulomb collisions. The effective frequencies of different kinds of collisions simply
add up following the Matthiessen rule [66], i.e., ν = νei + νee [e.g., 175, 94].

Although the electron-ion ei and electron-electron ee collision frequencies can be
calculated from the kinetic theory. The recent development in this area is beyond the
scope of this thesis.

We use the recent results from Cassisi et al. [25] that update the previous calcu-
lations by Hubbard & Lampe [66], Itoh and coworkers [75, 74, 111, 76, 77, 78], and
Yakovlev and coworkers [11, 137, 136, 148], extensively used in the literature. They
improve upon Hubbard & Lampe by including an updated treatment of both the ei
scattering and the ee scattering for strongly coupled and relativistic plasma, and are not
restricted to the specific mixtures published by Hubbard & Lampe. The enhancements
are mainly the ee scattering, accurate treatment of the ei scattering at high densities,
and the fact that their results extend to the regimes of partial degeneracy (T > TF) and
weak ion coupling. The Figure 3.4 represent the resulting electron thermal conductiv-
ity for different values of temperature.
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different values of temperature T.

3.3 Thermonuclear Reactions: How to burn the material

and change the chemical composition?

Nuclear reactions are very important in cataclysmic events [e.g., 80]. They deter-
mine nucleosynthesis in stellar explosions, such as type I supernovae, as well as igni-
tion and burning in accreting stars [6]. The ignition conditions are sensitive to the 12C
and 16O abundance and to thermonuclear reaction rates [117]. Recent advances have
been made to determine the astrophysical S-factor at stellar energies, typically lower
than the current accessible range of low-energy fusion experiments [92, 34, 13, 73].

Although we know that in high-density cores of white dwarfs thermonuclear reac-
tions are strongly affected by plasma effects [144], we shall concentrate our efforts just
on the thermonuclear reaction network to decrease the amount of ingredients consid-
ered. Especially because there is a current discussion about reaction rates at very high
densities [e.g., 53, 172, 135, 134].

There is several books that present the classic treatment of thermonuclear reaction.
The following explanation is based on the excellent description by Iliadis [72] and Clay-
ton [30].
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3.3.1 Fusion Reactions

In a reaction involving four species, a(b, c)d, where both projectile a and target b are
represented by particles with rest mass, the reaction rate is well described by

rab = (1 + δab)
−1nanb〈σv〉ab (3.37)

where 〈σv〉ab is the pair reaction rate, na and nb are the number densities of the inter-
acting particles, and δab is the Kronecker delta to avoid counting each pair of identical
particles twice.

The nuclei in stellar plasma, with the exception of neutron stars, are always non-
degenerate. In thermodynamic equilibrium, the nuclei are non-relativistic with the
distribution of relative velocities well described by a Maxwell-Boltzmann distribution
[e.g., 30, § 4-2]. Then, we may write the reaction rate per particle pair 〈σv〉ab more
explicitly in the form

λab ≡ 〈σv〉ab =

(
8

πmab

)1/2 1
(kBT)3/2

∫ ∞

0
Eσ(E)e−E/(kBT)dE (3.38)

where E is the center-of-mass energy. Clearly, the reaction rate depends critically on
the cross section σ which differs for each nuclear reaction.

The Figure 3.5a shows the factor (kT)−3/2Ee−E/kT versus energy E for three differ-
ent scenarios: (i) the Sun core (T = 1.5× 107 K), (ii) a nova (T = 3× 108 K), and (iii) a
supernova (T = 1× 109 K). Each curve increases linearly at small energies, reaches a
maximum at E = kBT, and then decreases exponentially and approaches zero for large
values of E. The maxima of the curves occur at Emax = kBT = 1.3 keV, 26 keV, and 86
keV.

3.3.2 Photo-disintegration Reactions

If the reaction involves a photon, then the process a(γ, c)d is denominated a photo-
disintegration reaction. The reaction rate in this case is given by

raγ = na

∫ ∞

0
cnγ(E)σ(E) dE (3.39)

since the number density of photons is not constant, but depends on the stellar tem-
perature and on the γ-ray energy.

The number of photon is given by the Planck radiation law, such that the photo-
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Figure 3.5: (a) The factor (kT)−3/2Ee−E/kT in the expression (3.38) for fusion
reaction rate at three different temperatures, T = 1.5 × 107 K (yellow line),
T = 3 × 108 K (orange line) and T = 1 × 109 K (blue line). (b) The factor
E2/(eE/kBT − 1) in the expression (3.40) for the photo-disintegration reactions
rate at three different temperatures, T = 1 × 109 K (blue line), 2.5 × 109 K
(orange line), and 5× 109 K (yellow line).

disintegration decay constant at a given temperature is

λaγ =
raγ

na
=

8π

h3c2

∫ ∞

Et

E
eE/kBT − 1

σ(E) dE (3.40)

where E is the photon energy, and Et is the threshold energy Et = −Qa(γ,c)d since most
photo-disintegration reactions are endothermic (Qa(γ,c)d < 0). We can note that λaγ

does not depend on the stellar density.

The Figure 3.5b shows the factor E/(eE/kBT − 1) versus γ-ray energy for three dif-
ferent scenarios: (i) T = 1.5× 109, (ii) T = 2.5× 109 K, and (iii) T = 5× 109 K. The
maxima of the curves occur at Eγ,max ≈ 1.6kBT = 140 keV, 349 keV and 700 keV. The
number of photons is not conserved, but is determined by the conditions of local ther-
mal equilibrium.

3.3.3 Abundance Evolution and Energy Generation

For a single reaction involving two nuclei a and b in the stellar plasma, the rate
of change of the number density of nucleus a due to reaction with nucleus b can be
expressed as

dna

dt
= −(1 + δab)ra(b,c)d = −nanb〈σv〉ab = −

na

τa
(3.41)
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and the Kronecker delta appears since for identical nuclei each reaction destroys two
particles. The quantity τa is the mean lifetime of the nuclear species a in the stellar
plasma.

Since the nuclear energy released per reaction is given by the Q-value, the energy
production per unit time and unit mass is then expressed by

εa(b,c)d =
Qa(b,c)dλa(b,c)d

ρ
(3.42)

or, using the (3.41), in terms of the number density

εa(b,c)d = −
Qa(b,c)d

ρ(1 + δab)

(
dna

dt

)
b

. (3.43)

The total releases energy during a time interval is obtained from

∫
εa(b,c)d dt = −

∫ n(fin)
a

n(ini)
a

Qa(b,c)d

ρ(1 + δab)
(dna)b =

Qa(b,c)d

ρ(1 + δab)
(∆na)b (3.44)

where (∆na)b = n(ini)
a − n(fin)

a is the change in the number density of nucleus a due to
the reaction with nucleus b.

In general, there is several nuclear processes (reactions, photo-disintegration, β-
decays) influencing together on the abundance evolution of a particular nucleus in a
stellar plasma. Then, in this case, the abundance evolution of nucleus a is given by the
differential equation

dna

dt
=

[
∑c,d ncnd〈σv〉c(d,b)a + ∑ f λ f (β,)an f + ∑g λg(γ,)ang

]
(3.45)

−
[
∑b nbna〈σv〉a(b,x)y + ∑h λa(β,)hna + ∑k λa(γ,)kna

]
The three terms in the first parenthesis represent all processes producing nucleus

a: the sum over all reactions producing nucleus a via fusion reactions between c and
d; the sum over all β-decays of nuclei f leading to a; and the sum over all photo-
disintegration of nuclei g leading to a. The terms in the second parenthesis stand for
all processes destroying nucleus a: the sum over all fusion reactions between a and
b; the sum over all β-decays of nuclei a; and the sum over all photo-disintegration of
nuclei a.

If the mass density changes during the nucleosynthesis, it is more advantageous to
express (3.46) in terms of the abundance of species a, Xa. In our simulations we will
treat the problem of explosive nucleosynthesis being more appropriate to work with
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the evolution of the abundance Xa instead of number density na.

Another important consideration is that if reactions produce electrons, positrons,
or γ-rays, then their energy is retained in the stellar plasma. On the other hand, neu-
trinos are weakly interacting with the medium that they must escape from the site of
thermonuclear burning, with the important exceptions for big bang and core collapse
supernovae. Since the neutrino energy is usually not deposited in the star, it has to be
subtracted from the Q-value when calculating the nuclear energy generation.

3.3.4 Thermonuclear reaction rate

At low energy, typical for astrophysical conditions, the fusion cross section σ(E)
can be written as a product of three separate energy-dependent factors

σ(E) =
e−bE−1/2

E
S(E), (3.46)

where b ≡ 2π
h̄ ZaZbe2√mab/2 is the Gamow parameter, E is the center-of-mass kinetic

energy of the nuclei, Za and Zb are the charge numbers of the nuclei, and mab =

mamb/(ma +mb) is the reduced mass. This parametrization for the fusion cross section
removes the strong non-nuclear energy dependence associated with Coulomb barrier
penetration by the Gamow factor, e−bE−1/2

, and the geometrical factor, 1/E.

The factor S(E) represents the intrinsically nuclear parts of the probability for the
occurrence of a nuclear reaction. This factor is a slowly varying function of E which
can be extrapolated to lower energies relevant to stellar burning, being therefore called
astrophysical S-factor. With this definition, we write the non-resonant reaction rate as

〈σv〉ab =

(
8

πmab

)1/2 1
(kBT)3/2

∫ ∞

0
S(E)e−bE−1/2

e−E/(kBT)dE (3.47)

The integrand in (3.47) has an interesting energy dependence. The factor e−E/kBT

from the Maxwell-Boltzmann distribution goes to zero at large energies, while the
term e−bE−1/2

from the Gamow factor approaches to zero for small energies. Therefore,
the major contribution to the integral comes from energies where the product is near
its maximum. The Figure 3.6a illustrates this situation for the reaction 12C(α, γ)16O
at T = 2 × 108 K. The green line shows the Maxwell-Boltzmann factor e−E/kBT and
the blue line represents the Gamow factor e−bE−1/2

. The red line shows the product
e−E/kBT.e−bE−1/2

in the integrand of (3.47).

The Gamow peak is appropriately approximated by a Gaussian, as presented in
Figure 3.6b for the reaction C12(α, γ)O16 at T = 2× 108 K. The Gaussian approximation
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Figure 3.6: (a) The Maxwell-Boltzmann factor e−E/kBT (green line) and the
Gamow tunneling factor e−bE−1/2

(blue line) versus energy for the reaction
12C(α, γ)16O at T = 2× 108 K. The Gamow’s peak product e−E/kBT.e−bE−1/2

(red line) is also represented. (b) The Gamow peak for the reaction C12(α, γ)O16

at T = 0.2 GK. The curve (blue dashed line) is asymmetric about E0, but it is ade-
quately approximated by a Gaussian (red solid line). The width of the Gaussian
is presented by ∆.

is obtained by a series expansion of the exponential argument

exp
(
− b√

E
− E

kBT

)
≈ exp

(
− 3E0

kBT

)
exp

[(
E− E0

∆/2

)2
]

(3.48)

around the peak energy E0, energy in which the first derivative with respect to E van-
ishes,

E0 =

(
b
2

)2/3

(kBT)2/3, (3.49)

with a Gaussian width ∆, obtained from the requirement that the second derivatives
match at E0, written as

∆ =
4√
3

√
E0kBT. (3.50)

Since kBT � E0 in astrophysical situations, it is apparent that the width ∆ of the
Gamow peak is smaller than E0. The Figure 3.6b shows the Gamow peak and its ap-
proximation for the reaction C12(α, γ)O16 at T = 2× 108 K.

The energy E0 is the most effective energy for non-resonant thermonuclear reac-
tions.

NA〈σv〉 = NA

(
2

mab

)1/2 (kBT)1/2∆
9E2

0
S0τ2e−τ (3.51)
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with τ = 3E0/(kBT).

The presence of resonances can fully dominate a nuclear cross-section. This occurs
at an energy of the incident projectile that matches the energy of an excited state in
the compound nucleus. Isolated and narrow resonances are frequently described by
means of the Breit–Wigner formula

σ(E) =
λ2ω

4π

ΓiΓo

(Er − E)2 + Γ2/4
, (3.52)

with
ω =

(2J + 1)(1 + δab)

(2Ja + 1)(2Jb + 1)
, (3.53)

where Ja and Jb the total spins of the interacting particles a and b, and J the spin of
the resonance state in the compound nucleus, Er is the resonance energy, λ is the de
Broglie wavelength.

The reaction rates for a single narrow resonance can be calculated putting (3.52) into
(3.38). For narrow resonances, the Maxwell-Boltzmann factor and the partial widths
are approximately constant over the total width of the resonance, such that

NA〈σv〉 = NA

(
2π

mabkBT

)3/2

h̄2e−Er/kBTω
ΓaΓb

Γ
. (3.54)

The reaction rates for narrow resonances depend only on the energy and the strength
of the resonance, ωΓaΓb/Γ, but not on the exact shape of the cross section curve. This
is excellent because for most narrow resonances the partial and total widths are exper-
imentally not known. Indeed, if several narrow and isolated resonances contribute to
the cross section, their contributions to the reaction rate add incoherently.

Two corrections to the non-resonant reaction rate must be considered. The first cor-
rection comes from the difference between the area of the asymmetric Gamow peak
and the area of the symmetric Gaussian (see Figure 3.6b), being corrected by a multi-
plicative factor that represents the ratio of the areas under these two curves. A second
correction is necessary since for many non-resonant reactions the S-factor is not con-
stant, but varies with energy. As a result of these corrections, one has to replace in
(3.51) the constant S0 by an effective S-factor [50] given by

Seff(E0) = S(0)
[

1 +
5

12τ
+

S′(0)
S(0)

(
E0 +

35
36

kBT
)
+

1
2

S′′(0)
S(0)

(
E2

0 +
89
36

E0kBT
)]

(3.55)

where S(0) is the S-factor at E = 0 and the primes indicate derivatives with respect to
E. The first terms in the square bracket correspond to the factor caused by the asym-
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metry of the Gamow peak, while the other terms arise from corrections caused by the
S-factor variation with energy. Explicitly, one finds

NA〈σv〉 = C1

T2/3
9

e−C2/T1/3
9

(
1 + C3T1/3

9 + C4T2/3
9 + C5T9 + C6T4/3

9 + C7T5/3
9

)
(3.56)

as a suitable analytic expression for the pair reaction rate.

For the calculation of the total reaction rates, all processes contributing significantly
to the reaction mechanism in the effective stellar energy range have to be taken into
account. The effective energy range is given by the Gamow peak for reactions induced
by charged particles. The various contributions to the total reaction rates can be added
incoherently since interferences are negligible, so that

NA〈σv〉total = ∑
i

NA〈σv〉iresonant + NA〈σv〉non-resonant (3.57)

In this work, we use the total pair reaction rates NA〈σv〉total described by (3.57) and
tabulated in Table II from Caughlan & Fowler in Ref.[27].

3.3.5 Nuclear Reaction Network

In stellar situations, we have to consider the evolution of not just one nucleus, but
of several species simultaneously. For each nuclide we can set up an expression of
the form given by (3.46). Such a system of coupled, nonlinear ordinary differential
equations is called a nuclear reaction network. There is simplest cases where we may
solve the reaction network analytically, but most of the cases this reaction network
must be solved numerically [e.g., 6, 158].

The simplest nuclear reaction network is the α-chain only composed of (α, γ) and
(γ, α) links among the 13 isotopes 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti,
48Cr, 52Fe, and 56Ni. Although very simple an α-chain network gives a thermonuclear
energy generation rate that is generally close of the generation rate given by much
larger nuclear reaction networks.

3.3.6 Nuclear Statistical Equilibrium

Sometimes the solutions of nuclear reaction networks reveal certain fundamental
properties which simplify the interpretation of the results. The most important of these
properties are called steady state and equilibrium. A steady-state solution exists if
for some part of the reaction network the time derivative of all abundances dXi/dt,
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are zero or nearly zero. This implies that in (3.46) the sum of all destruction terms is
balanced by the sum of all creation terms.

At high temperatures and densities, thermonuclear reactions will proceed rapidly
and an equilibrium can be established between the various nuclear species present
in the medium. Every nuclei in the network is now in equilibrium via strong and
electromagnetic interactions and one large quasi-equilibrium group stretches from p,
n, α to the iron peak nuclei. The weak interaction do not participate in the equilibrium
due to the large mean free path of the neutrinos. This situation is referred to as nuclear
statistical equilibrium (NSE) [164].

At temperatures T & 3 × 109 K, the photo-disintegration of silicon will proceed
rapidly, releasing protons, neutrons, and alpha particles. In NSE, the decomposition
of 28Si during the silicon burning has mainly produced 56Ni (see Figure 4.6a), which
is the most tightly bound species with N = Z. Therefore, the stellar plasma consists
entirely of 4He, 28Si and 56Ni at nuclear statistical equilibrium, with weak interactions
neglected. The balance between helium and silicon is given by the Saha equation as

X7
4He

X28Si
=

(
θ

ρNA

)6 ( 47

28

)5/2

e[7B(4He)−B(28Si)]/kBT (3.58)

and balance between helium and nickel can be written as

X14
4He

X56Ni
=

(
θ

ρNA

)13(414

56

)5/2

e[14B(4He)−B(56Ni)]/kBT (3.59)

with the total mass fraction constraint ∑a Xa = 1, the parameter θ = (2πkBT/(NAh2))3/2

and B(Xa) being the binding energy of the isotope Xa.

For a given density, in the lower temperature region 56Ni dominates the composi-
tion as displayed in Figure 3.7. However, at higher temperatures 4He is the dominant
nucleus. Then as the temperature increases at a given density, an increasing fraction of
the composition resides in α, and the same occurs for decreasing densities at a given
temperature.

When we say that at a particular temperature the nuclear reactions are in equilib-
rium, we mean that this temperature exists long enough for a good approximation to
equilibrium to occur. The nuclear gas requires a finite amount of time to adjust to equi-
librium. The approximate time (in seconds) to reach nuclear statistical equilibrium for
given values of T and ρ can be estimated from the numerical expression [85]

τNSE = ρ0.2e179.7/T9−40.5. (3.60)
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Figure 3.7: The mass fractions under nuclear statistical equilibrium as a func-
tion of temperature for different values of density. The point here is that, with
rising temperatures at a given density, or with decreasing densities at a given
temperature, an increasing fraction of the composition resides in light parti-
cles and that this transformation absorbs a large amount of energy.
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At T = 4× 109 K, for example, nuclear statistical equilibrium is established in about
1 h, while at T = 6× 109 K the time is only ≈ 103 s. The high temperatures and den-
sities achieved in the thermonuclear explosion imply that most nuclear reactions will
take part in nuclear statistical equilibrium or quasi-NSE. Therefore, the nucleosynthe-
sis and nuclear energy generation will in general not be sensitive to individual reaction
rates but will depend on reaction Q-values, whose the masses of the nuclides taking
part in the nucleosynthesis are well known. We expect current reaction rate uncertain-
ties to play a role only during the ignition phase, mainly due to 12C+ 12C and 12C+ 16O
reaction rates.

3.4 Gravitational Force

Since GM�/R⊕c2 ∼ 10−4, general relativistic effects are not relevant to our physi-
cal modeling of white dwarfs. Therefore, the self-gravity of the white dwarf star intro-
duces an external force to the hydrodynamical equations:

f = −∇Φ (3.61)

where Φ is the gravitational potential given by Poisson’s equation ∇2Φ = 4πGρ. In
the one-dimensional simulations, this Poisson’s equation can be solved together with
the hydrodynamics equations in a beautiful variational principle method.
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Chapter 4

Numerical Details

There’s no sense in being precise when you don’t
even know what you’re talking about.

– J. von Neumann (1903-1957)

In principle, a full numerical implementation of a system describing the explosive
nucleosynthesis and the propagation of shock waves in white dwarf matter would
require to solve concomitantly the hydrodynamics equations (Section 2.2) with nuclear
reactions (Section 3.3), together with the appropriate transport properties (Section 3.2)
and equation of state (Section 3.1).

4.1 One-dimensional Fluid dynamics

We shall concentrate our efforts in one-dimensional simulations. Although, multi-
dimensional simulations are feasible with current computer power, we will not focus
on this application because those do not solve the full scale space problem in numerical
simulations without approximations.

4.1.1 Effective Lagrangian Description

Our one-dimensional hydrodynamic calculations use the Effective Lagrangian Method
[88] instead of the finite elements method or other standard hydrodynamics algo-
rithms. This formulation is adequate to investigate the formation and propagation of
a shock wave as accurate as possible, and it has the advantage of keeping a complete
control of the physical quantities, as the balance of energy during the explosion.

We consider the stellar interior make of N homogeneous spherical shells, so that
the dynamics coordinates of the system should be the radial coordinates of the shell
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Figure 4.1: Representation of stellar interior using shells. The radii Ri and
Ri−1 are the outer and inner radius of the shell, respectively.

surface, {Ri} = {R0, R1, R2, . . . , RN}, and R0 = 0 for convention, as represented in
Figure 4.1. Physical quantities associated with the shell between Ri and Ri−1 are char-
acterized by the index i, so the density of such shell is ρi, the temperature is Ti, the
abundance of isotopes is X i, and others.

The mass of each shell is keep constant over time, and it can be write simply as

mi =
4π

3
ρi

(
R3

i − R3
i−1

)
, (4.1)

and the density ρi will be uniform within each shell.

The Lagrangian of the system is expressed as

L({Ri}, {Ti}, {X i}) = K−Ω−U (4.2)

where K is the total kinetic energy, Ω is the gravitational potential energy and U the
internal energy of the fluid.

The kinetic energy can be expressed as a function of Ri and Ṙi. The continuity
equation gives

1
r2

d
dr

(
r2v(r)

)
= − ρ̇

ρ
, (4.3)

where vi(r) is the velocity field and for the spherical shell we found

vi(r) = Ar + B/r2, (4.4)

with the boundary conditions

vi(Ri) = Ṙi and vi(Ri−1) = Ṙi−1 (4.5)
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so

A =
R2

i Ṙi − R2
i−1Ṙi−1

R3
i − R3

i−1
(4.6)

B = −R2
i R2

i−1
(

ṘiRi−1 − Ṙi−1Ri
)

R3
i − R3

i−1
. (4.7)

Therefore, the kinetic energy of the shell i is

Ki =
1
2

ρi

∫ Ri

Ri−1

v2
i (r)4πr2 dr

=
1
2

(
Ṙi−1 Ṙi

)Πi
11 Πi

12

Πi
21 Πi

22


Ṙi−1

Ṙi

 , (4.8)

with

Π(i)
11 =

3
5

ξ3(ξ3 + 3ξ2 + 6ξ + 5)
(ξ2 + ξ + 1)3 mi (4.9)

Π(i)
12 = Π(i)

21 =
9

10
ξ2(ξ2 + 3ξ + 1)
(ξ2 + ξ + 1)3 mi (4.10)

Π(i)
22 =

3
5
(5ξ3 + 6ξ2 + 3ξ + 1)

(ξ2 + ξ + 1)3 mi, (4.11)

where ξ is defined as

ξ ≡ Ri−1

Ri
(4.12)

and we omit the subscript i to not overload the notation.

The total kinetic energy of the star can be written as

K =
1
2

N

∑
i,j

Πijvivj, (4.13)
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with vi = Ṙi, and explicitly

Π =



Π(1)
22 + Π(2)

11 Π(2)
12 0 0 · · · 0

Π(2)
21 Π(2)

22 + Π(3)
11 Π(3)

12 0 · · · ...

0 Π(3)
21 Π(3)

22 + Π(4)
11 Π(4)

12 · · · ...
0 0 0
...

...
... 0

...
... 0 Π(n−1)

21 Π(n−1)
22 + Π(n)

11 Π(n)
12

0 · · · 0 0 Π(n)
21 Π(n)

22


,

(4.14)
is a symmetric tri-diagonal matrix.

The gravitational energy can be calculated by

Ω = −G
2

∫∫
d3r1d3r2

ρ(r1)ρ(r2)

|r1 − r2|
. (4.15)

We can associate an individual contribution to each shell such that Ω = ∑N
i=1 Ωi,

where Ωi has two contributions: the first from the gravitational interaction of the shell
with its interior shells (Gauss’ Law); and the contribution from the self-interaction.
Together, both contributions are expressed by

Ω = −G
N

∑
i=1

3
10

mi

Ri

[
f (ξ)mi + g(ξ)Mi−1

]
, (4.16)

with

f (ξ) =
3ξ3 + 6ξ2 + 4ξ + 2

(ξ2 + ξ + 1)2

g(ξ) = 5
ξ + 1

(ξ2 + ξ + 1)
,

and Mi−1 is the total mass of its internal shells, Mi−1 = ∑i−1
j=1 mj.

The internal energy is purely

U =
N

∑
i=1

u(ρi, Ti, X i)mi, (4.17)

where u is the internal energy per gram of the material, ρi is the shell mass density and
Ti is the shell temperature.
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The equations of motion are derived from the Euler-Lagrange equations as

d
dt

(
∂L
∂Ṙi

)
=

∂L
∂Ri

, (4.18)

resulting in

Π
d2R
dt2 = Θ

dR
dt

+ F, (4.19)

where Π is the kinetic matrix given by Eq.(4.14) and Θ = −1
2dΠ/dt, and the force

term F is

F =



4πR2
1(∆p(1) + ∆q(1))− G

R2
1

[
f (1)1 m2

1 + f (2)2 m2
2 + g(2)2 m2M1

]
4πR2

2(∆p(2) + ∆q(2))− G
R2

2

[
f (2)1 m2

2 + f (3)2 m2
3 + g(2)1 m2M1 + g(3)2 m3M2

]
...

4πR2
i (∆p(i) + ∆q(i))− G

R2
i

[
f (i)1 m2

i + f (i+1)
2 m2

i+1 + g(i)1 mi Mi−1 + g(i+1)
2 mi+1Mi

]
...

4πR2
n(p(n) + q(n))− G

R2
n

[
f (n)1 m2

n + g(n)1 mnMn−1

]


,

(4.20)
with ∆p(i) ≡ pi − pi+1 and ∆q(i) ≡ qi − qi+1, using the boundary condition pn+1 =

qn+1 = 0, and

f (i)1 =
3
5
(5ξ3 + 6ξ2 + 3ξ + 1)

(ξ2 + ξ + 1)3 (4.21)

f (i)2 =
9

10
ξ4(ξ2 + 3ξ + 1)
(ξ2 + ξ + 1)3 (4.22)

g(i)1 =
3
2

(2ξ + 1)
(ξ2 + ξ + 1)2 (4.23)

g(i)2 =
3
2

ξ3(ξ + 2)
(ξ2 + ξ + 1)2 . (4.24)

The equations of motion (4.19) must be coupled to a set of additional equations: the
balance equation of energy and the balance equation of isotopes abundance.

The balance equation of energy is essentially the first law of thermodynamics

dU
dt

= −p
dV
dt

+ Q̇, (4.25)
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and with the help of the fundamental equation of the matter

U = u(ρ, T, X)m, (4.26)

can be rewritten as
Cv

dT
dt

= −
(

∂U
∂ρ

)
T

dρ

dt
− p

dV
dt

+ Q̇, (4.27)

where Cv = cvm is the heat capacity at constant volume and the heat source term Q̇ is

Q̇ = −q
dV
dt

+ mε− L, (4.28)

with q being the artificial viscosity term, ε the energy generation rate of thermonuclear
reactions per gram of combustible, and L the luminosity for radiative and conductive
heat transfer.

The balance equation of abundance, without diffusion of the elements, can be ex-
pressed as

dXa

dt
= ∑

b
Λab, (4.29)

where Λ = Λ(ρ, T, X) is the reaction rate an X is the abundance which represents the
mass fraction of the isotope.

Once specified the equation of state, the nuclear energy generation rate, the artificial
viscosity and the luminosity, the above system of equations (4.19), (4.27) and (4.29) can
be solved numerically for the set of variables {Ri, Ti, X i} with i = 1, . . . , N.

It is important to note that in our formalism the total energy

E = K + Ω + U (4.30)

is strictly conserved when there is no nuclear reactions and luminosity present, inde-
pendently of the number of shells N. In fact

dE
dt

=
N

∑
i=1

(miεi − Li). (4.31)

This is a basic advantage of the Effective Lagrangian Method: it permits us to keep
absolute control of the energy content even for a small value of N. Another advantage
is that, in the large N limit for spherically symmetric systems, the Effective Lagrangian
Method is equivalent to the Reactive Euler Equations adding the artificial viscosity
term.
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4.2 Artificial Viscosity

To prevents non-physical high-frequency oscillatory modes during a shock regime,
von Neumann and Richtmyer [114] introduced the artificial viscosity expressed as

q =

(q0∆R)2ρ(ρ̇/ρ)2, ρ̇ > 0

0, ρ̇ < 0
. (4.32)

where ∆R is the radial length of the shell and q0 is a dimensionless parameter between
0 and 1.0.

The original prescription of von Neumann and Richtmyer was found to work fine
in Cartesian coordinates, but in a spherical collapse where the infall velocity vr ∝ r, it
presents a problem, producing significant artificial viscosity where there is no shock.
The problem was solved (e.g. [17]) by defining the artificial viscosity as

q = −q2
0ρ(∆r)2|∇ · v|

(
∂vr

∂r
− 1

3
∇ · v

)
(4.33)

and in the free-fall collapse q = 0 (Section 4.7.1).

4.3 Equation of state

Our equation of state has the input variables as mass density ρ and temperature T
of the material and the output variables are the pressure and internal energy per unit
mass as a sum over species

p(ρ, T, X) = prad + pion + pele + ppos, (4.34)

u(ρ, T, X) = urad + uion + uele + upos, (4.35)

where the subscripts rad, ion, ele and pos represent the contributions due to radiation,
ions, electrons and positrons, respectively.

Moreover, quantities as heat specific cV and cp, adiabatic index γ and speed of
sound cs can be determined from known partial derivatives of the pressure and the
specific internal energy with respect to the density and temperature. For this reason,
our routine returns the partial derivatives

∂p
∂ρ

∣∣∣∣
T

,
∂p
∂T

∣∣∣∣
ρ

,
∂u
∂ρ

∣∣∣∣
T

,
∂u
∂T

∣∣∣∣
ρ

, (4.36)
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and the accuracy and thermodynamic consistency of the appropriated Maxwell rela-
tions are verified following the study by Timmes & Arnett [159].

Since the calculation of the Fermi-integrals needed to determine the electron con-
tribution and the electron-positron pair creation is numerically too expensive to be
carried out during the simulation, these contributions are read off a recalculated ta-
ble via bilinear interpolation. The table entries were located on a regular grid in the
(log T, log (ρ/µe))-plane and spanned ranges of log T = [4; 11] and log (ρ/µe) = [-6;
11] in cgs units. This procedure is equivalent to the Helmholtz equation of state pre-
sented by Timmes et al. in [161]. We present the relevant calculations and algorithms
in Appendix A.

4.4 Luminosity and Opacities

To simulate the thermal evolution inside the star, we use the following expression
for the total luminosity of a spherically symmetric shell,

Li = 4πR2
i−1

4ac
3

T3
i−1

κi−1ρi−1

(
Ti − Ti−1

Ri − Ri−1

)
− 4πR2

i
4ac
3

T3
i

κiρi

(
Ti+1 − Ti

Ri+1 − Ri

)
(4.37)

where the first parcel is the luminosity coming from the inner shell and the second one
is the luminosity leaving the shell. This prescription is the integral version of the (2.31)
and it is sufficient to keep the conservation of energy inside the star. In fact, the total
luminosity becomes

Ltotal =
N

∑
i=1

Li = LN, (4.38)

which is the luminosity of the outermost shell.

As discussed in Section 3.2, the total opacity κ in (4.37) can be written as

κ(ρ, T, X) =
(

κ−1
rad + κ−1

cond

)−1
(4.39)

with the radiative opacity equals

κrad = 1023ρT−3.5 + 0.2 cm2 g−1, (4.40)

and the conductive opacity is constructed from the condall06.d1 table of electron ther-
mal conductivity by Cassisi et al. [25]. This conductivity table covers a large region
of the log ρ = [-6; 9] and log T = [3; 9] plane, and ion charge numbers Z from 1 to

1http://www.ioffe.ru/astro/conduct/condint.html

http://www.ioffe.ru/astro/conduct/condint.html
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60. Moreover, for the outer-table regions we use analytical fits to the electron thermal
conductivity. We use the Iben [71] fit to the Hubbard-Lampe [66] electron conduc-
tion opacity for the non-degenerate phase, and the Cassisi’s procedure established for
the electron-electron contributions with the fitting formula from Potekhin et al. [137]
for the electron-ion contributions in the degenerate case. The transition between non-
degenerate and degenerate cases for the outer-table region is simplified as

log Tdeg = 0.36 log (ρ/µe) + 7.34 (4.41)

where the region with temperatures below the degenerate temperature Tdeg is strongly
degenerate and above the electrons are non-degenerate.

4.5 Thermonuclear reactions

The thermonuclear reactions are treated for several isotopes in a nuclear reaction
network. Since nuclear networks with hundreds of isotopes are very expensive in
terms of CPU time and memory, we use a simplified nuclear network in our hydrody-
namical calculations.

The iso7 network, presented by Timmes et al. in [160], provides the nuclear energy
generation rate and abundance levels of an α-chain nuclear network that contains only
seven isotopes. From 4He to 24Mg the iso7 reaction network is equivalent to the stan-
dard α-chain reaction network, but the difference starts at 28Si. There is no flow from
28Si to 32S, instead, 28Si moves directly to 56Ni with the addiction of 7 4He nuclei, skip-
ping the intermediate isotopes present in an α-chain reaction network. These direct
transitions between [28Si] and [56Ni] are the key steps in reducing the network size to
seven isotopes.

The set of 7 nuclei used is

XT = (4He, 12C, 16O, 20Ne, 24Mg, [28Si], [56Ni]) (4.42)

where [28Si] mass fraction is a silicon group (intermediate mass elements - IME) abun-
dance and the [56Ni] mass fraction is an nickel-iron group abundance. And explicitly,
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the reaction network is the following:

d(4He)
dt

=− 3λ3α(
4He)3 + 3λC(γ,3α)(

12C)− λC(α,γ)(
4He)(12C) (4.43)

+ λC(C,γ)(
12C)2 + 0.5λC(O,α+γ)(

12C)(16O) + λO(γ,α)(
16O)

− λO(α,γ)(
4He)(16O) + λO(O,α)(

16O)2 + λNe(γ,α)(
20Ne)

− λNe(α,γ)(
4He)(20Ne) + λMg(γ,α)(

24Mg)− λMg(α,γ)(
4He)(24Mg)

+ λSi(γ,α)(
28Si)− 7.0λSi→Ni(

4He) + 7.0λNi→Si[
56Ni)]

d(12C)

dt
=λ3α(

4He)3 − λC(α,γ)(
4He)(12C)− λC(γ,3α)

12C− 2λC(C,γ)(
12C)2 (4.44)

− λC(O,α+γ)(
12C)(16O) + λO(γ,α)(

16O)

d(16O)

dt
=λC(α,γ)(

4He)(12C)− λC(O,α+γ)(
12C)(16O)− λO(γ,α)(

16O) (4.45)

− λO(α,γ)(
16O)(4He)− 2λO(O,α)(

16O)2 + λNe(γ,α)(
20Ne)

d(20Ne)
dt

=λC(C,γ)(
12C)2 + λO(α,γ)(

16O)(4He)− λNe(γ,α)(
20Ne) (4.46)

− λNe(α,γ)(
20Ne)(4He) + λMg(γ,α)(

24Mg)

d(24Mg)
dt

=0.5λC(O,α+γ)(
12C)(16O) + λNe(α,γ)(

20Ne)(4He)− λMg(γ,α)(
24Mg) (4.47)

− λMg(α,γ)(
24Mg)(4He) + λSi(γ,α)(

28Si)(4He)

d[28Si]
dt

=0.5λC(O,α+γ)(
12C)(16O) + λO(O,α)(

16O)2 − λMg(α,γ)(
24Mg)(4He) (4.48)

− λSi(γ,α)(
28Si)− λSi→Ni(

4He) + λNi→Si[
56Ni]
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d[56Ni]
dt

= λSi→Ni(
4He)− λNi→Si[

56Ni] (4.49)

The λC(O,α+γ) = λC(O,α)Mg + λC(O,γ)Si represents the total carbon-oxygen fusion
reaction rate with the same branching ratio for magnesium and silicon production. In-
deed, the λSi→Ni and λNi→Si are the direct and reverse reaction rate from intermadiate-
mass elements [28Si] to nickel-group elements [56Ni], respectively.

Once the nuclear reaction network has been constructed, the average energy gener-
ated per unit mass over a time interval ∆t in (4.28) is

εnuc(ρ, T, X) = NA ∑
k

Bk
Ak

∆Xk
∆t

. (4.50)

where Bk is the binding energy of the isotope k. This average energy generation rate
is used when the hydrodynamic evolution is slower than the nuclear evolution and it
was used in this work.

The point is that this iso7 network gives the thermonuclear energy generation rate
and nucleosynthesis generally close of that given by much larger nuclear reaction net-
works.

4.6 Integration and Timestepping

4.6.1 The Runge-Kutta-Fehlberg Integrator

Runge-Kutta methods for integrating systems of differential equations are well
known, tried and trusted methods, which use multiple estimates of the derivative
across a given time-step to arrive at accurate, generally high order estimates for the
evolved quantities. Most common is the fourth order Runge-Kutta method, often sim-
ply abbreviated to RK4, which has been known and used for over a century [93].

The embedded methods are designed to produce an estimate of the local trunca-
tion error of a single Runge-Kutta step, and as result, allow to control the error with
adaptive step-size. The embedded method I have used is the Fehlberg method [43],
which consists of two methods in the tableau, one with order 1 and one with order 2,
denominated Fehlberg RKF1(2) method.

For a given variable y, the evolution from yn at time tn to yn+1 at time tn+1 = tn +∆t
is given by

dy
dt

= f (t, y), (4.51)
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with the lower-order step given by

yn+1 = yn +
∆t
256

(k1 + 255k2) , (4.52)

and the high-order step given by

y∗n+1 = yn +
∆t
512

(k1 + 510k2 + k3) (4.53)

with the RKF1(2) steps written explicitly as

k1 = f (tn, yn) (4.54)

k2 = f
(

tn +
∆t
2

, yn +
∆t
2

k1

)
(4.55)

k3 = f
(

tn + ∆t, yn +
∆t
256

(k1 + 255k2)

)
. (4.56)

The truncated error estimate can be determined from

εn+1 = |yn+1 − y∗n+1| =
∆t
512
|k1 − k3| (4.57)

4.6.2 Timestepping Criteria

For any integrator, it is crucial that the time-step be chosen correctly, both to ensure
the accuracy of the evolution and to ensure numerical stability. In this section I shall
briefly discuss the principal timestepping criteria in general use, and one specific to
the code I have used.

Integrator Criterion

The RKF1(2) method has a time-step criterion associated with the error correction.
The calculated step can either be accepted (ε < tol) or rejected (ε > tol) and re-
calculated. In both cases one can use the error measure to estimate the new time step.
Since ε ∝ ∆t, the new time step is

∆tnew = s
(
tol

ε

)
∆t (4.58)

where s < 1 is a "safety factor" for a conservative choice of the next time step.
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Courant-Friedrichs-Lewy Criterion

By far the most general time-step criterion for gas-dynamical systems is the so-
called Courant-Friedrichs-Lewy or CFL criterion, given in it simplest form by

∆tCFL ≤
l
v

(4.59)

where l is a characteristic length scale, and v is a characteristic speed [35]. For one-
dimensional simulations, these are both well defined; the fluid element length ∆x pro-
vides the characteristic length, and sound speed cs gives the characteristic speed.

The CFL condition for our spherical shells description then becomes

∆tCFL =
∆R
cs

(4.60)

The physical interpretation of this time interval is that it prevents spatial informa-
tion transfer through the fluid at a rate greater than the local sound speed.

Force Criterion

A further commonly used time-step condition is that based on the acceleration of
the fluid element, know as the acceleration condition. This is simple in form, and is
given by

∆tF =

√
∆R
|a| (4.61)

where a is the fluid element acceleration.

Conservative Criterion

A general class of additional time-step criteria can be obtained by dimensional anal-
ysis, in that for any time-varying quantity y we may define a characteristic timescale
on which it varies as

∆ty =
y
ẏ

(4.62)

where as usual ẏ is the time derivative of y.

Although not required in general, a time-step criterion of this form was imple-
mented into the code when looking at the effects of strongly varying cooling times
and to tracking the variation of energy during explosive dynamics.
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Setting the Time-step

There are therefore a variety of possible time-step choices, and thus to ensure that
they are all satisfied, the time-step for each fluid element used is the minimum of all
possibilities, i.e.

∆ti = min (∆tnew, ∆tCFL, ∆tF, ∆ty), (4.63)

which are the characteristic timescale for each fluid element. A good choice is to use
a global time-step ∆tglob, which is set by the minimum of the time-steps ∆ti for the
individual fluid element, such that

∆tglob = β min ∆ti, (4.64)

and β < 1 is a tuning factor. Values for β vary from problem to problem but are
generally in the range 0.25 - 0.5, and here we set β = 0.3.

This approach has the advantage that all fluid elements are evolved in a single
lockstep, and thus there is no lag due to evolve each element on separate time-steps.

4.7 Code Validation and Verification

At this point our software needs to be validated and verified. In this process of
checking, our software should fulfills its purposes to simulate a spherically symmetric
star and all processes associated with supernova explosions. In this section we list
some appropriate tests for this check.

4.7.1 Free fall collapse

Here we execute and present the simulation of the free-fall collapse of a homo-
geneous sphere. The problem has an analytical solution [33] that can be obtained
inserting the definition of velocity in the momentum conservation equation (with no-
pressure p = 0), while assuming that the homogeneous sphere is initially at rest (vr = 0
cm/s, at t = t0). The corresponding solution can be written as

(
8πGρ0

3

)1/2

(t− t0) =

(
1− R

R0

)1/2( R
R0

)1/2

+ arcsin
(

1− R
R0

)1/2

, (4.65)

where ρ0 and R0 are the initial density and radius of the sphere, and G is the gravita-
tional constant.

We perform a calculation using N = 100 shells, without pressure and artificial
viscosity, and our result are in excellent agreement with the analytical solution of the
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free-fall problem, as presented in Figure 4.2a.
In about 0.65 s, the density of the sphere has increased by six orders of magnitude

(Figure 4.2b) but, as theoretically predicted, homogeneity is maintained throughout
the sphere. This defines a homologous collapse, with a constant temperature and a
uniform density across the sphere. Note also that since ρ ∝ R−3, a plot of the density
versus radius has a constant slope, as showed in Figure 4.2c.

4.7.2 Sod’s Shock Wave Problem

As an example of a test involving shocks we consider the classical test of the spher-
ical explosion in ideal hydrodynamics, an extension of the classical Sod shock tube test
[154] to the case of spherical geometry. The present problem consists of a spherical
system of 1 earth radius. The interface is located at

At the initial time, the states on the left and on the right sides of the interface are
constant. The left state is a high density fluid characterized by ρ = 107 g cm−3 and
Ṙ = 0, the right state is a low density fluid defined by ρ = 1.25 × 106 g cm−3 and
Ṙ = 0. The equation of state is the complete eos presented in Section 4.3.

The Figure 4.3 represent the profiles of density, pressure and velocity at instants of
time t = 0, 0.125, and 0.25 s. There is no current analytical solution to this problem to
compare. The main purpose is to keep the small fluctuations produced by discontinu-
ities under control with the artificial viscosity.

4.7.3 Explosive Nuclear Burning

A explosive burning is characterized by a material heated and compressed by a
shock wave to some temperature Tsh and ρsh which subsequently expands adiabati-
cally as a pure radiation gas [e.g., 51]. The temperature and density decreases over a
hydrodynamic timescale, the free-fall timescale τhyd = (24πGρ)−1/2, in the form

T(t) = Tsh exp (−t/3τhyd), (4.66)

ρ(t) = ρsh exp (−t/τhyd). (4.67)

The Figure 4.4, Figure 4.5 and Figure 4.6b represent the explosive burning for pure-
helium, half-carbon-half-oxygen composition, and pure-silicon composition, respec-
tively. The precursor shock wave temperature and densities are listed in each figure.
Our results are compared to the original paper from Timmes et al. [160] and are in good
agreement with their calculations.
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Figure 4.2: (a) Simulation of the free-fall collapse of a homogeneous sphere.
Note the agreement between the analytical solution (red line) and the numeri-
cal results (blue points). Simulation performed with the ELcode, with N = 100
shells. (b) Evolution of the central density as a function of time for the free-fall
collapse. (c) Density profile versus radius for the free-fall collapse. The blue
dashed line represents the relation ρ ∝ R−3 to the outer shell.
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Figure 4.3: (a) Density profiles at times t = 0, 0.125, and 0.25 s, in Sod’s shock
wave problem, using ELcode with 1000 shells. (b) Pressure profiles. (c) Velocity
profiles.
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Figure 4.4: (a) Evolution of the mass fractions under adiabatic expansion us-
ing the iso7 reaction network. The initial conditions are T = 3× 109 K and
ρ = 1× 108 g cm−3 with a pure 4He composition. The sum of the intermediate-
mass fractions are plotted as silicon-group [28Si], and the sum of the nickel-
mass fractions are plotted as nickel-group [56Ni]. (b) The energy generation
rate under adiabatic expansion. Helium burning under these conditions is
exothermic.
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Figure 4.5: (a) Evolution of the mass fractions under adiabatic expansion us-
ing the iso7 reaction network. The initial conditions are T = 3× 109 K and
ρ = 1 × 109 g cm−3 with a mixture half 12C-half 16O composition. (b) The
energy generation rate under adiabatic expansion. Carbon-oxygen burning
under these conditions is exothermic.
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Figure 4.6: (a) Evolution of the mass fractions under adiabatic expansion us-
ing the iso7 reaction network. The initial conditions are T = 5× 109 K and
ρ = 1× 109 g cm−3 with a pure 28Si composition. (b) The energy generation
rate under adiabatic expansion. Silicon burning under these conditions is en-
dothermic before t ∼ 10−5 s and exothermic afterward. The transition point is
marked with the black vertical line.
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Chapter 5

Stationary Cooling of White Dwarfs

We learn about the stars by receiving and interpret-
ing the messages which their light brings to us. The
message of the Companion of Sirius when it was de-
coded ran: "I am composed of material 3,000 times
denser than anything you have ever come across; a
ton of my material would be a little nugget that you
could put in a matchbox." What reply can one make
to such a message? The reply which most of us made
in 1914 was—"Shut up. Don’t talk nonsense.

– A. S. Eddington (1882-1944)

The observed white dwarfs have considerable high effective temperatures (Teff)
ranging from 5,000 K to over 100,000 K, losing their thermal energy emitting radiation
[e.g., 90]. Their outer layers determine the thermal evolution of the whole white dwarfs
although the amount of mass contained there is small, while the bulk degenerate elec-
trons keep the star’s core essentially isothermal due to its high thermal conductivity
and hotter than the crust. The radiative opacity in these outermost layers prevents the
white dwarf to cool quickly. Comparison between observations and models requires
the corrections from the finite temperature effects to the white dwarf stellar structure,
despite the zero temperature approximation of highly degenerate electron gas pres-
sure provides an adequate description of the stellar structure as a whole. Many works
have been developed, since the discovery of the maximum mass of ideal white dwarfs
(WD) by [29], in the field of finite temperature corrections to the degenerate equation
of state (EoS) [e.g., 103, 67, 24]. However, as commented by Boshkayev et al. [18], a
systematic analysis using empirical mass-radius relations obtained from the spectro-
scopic or photometric measurements of masses and radii is still needed to understand
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the precise structure and the dynamics of time evolution of WDs.

Moreover, the total number of observed hot (Teff > 10 000 K) white dwarfs (WDs)
has increased enormously mainly due to the Sloan Digital Sky Survey (SDSS; [42]).
Follow-up high quality ground-based spectroscopy of survey objects yield large sam-
ples of hot WDs with precise measurements of effective temperatures and surface grav-
ities. More than 10,000 spectroscopically identified white dwarfs with determined ef-
fective temperatures (Teff) and surface gravities (log g) have been detected to date [82,
87], giving us the opportunity to explore the white dwarf mass distribution, which
ultimately provides insights into mass-loss processes during stellar evolution and the
mass budget of the Galaxy.

5.1 Extended Model for Outer Radiative Layers of White

Dwarfs

The highly degenerated electron gas inside a WD provides a high thermal conduc-
tivity as a result of the large mean free path of the degenerate electrons in the filled
Fermi sea [e.g., 166]. Such high thermal conductivity together with the lack of nuclear
reactions do not allow large temperature gradients, leading to an almost uniform tem-
perature in the WD interior. On the other hand, in the domain close to its surface,
the density ρ decreases and the matter becomes quickly non-degenerate. Then, the
dominant heat transfer is the radiative one (and a little convection), and the heat con-
duction becomes much smaller if compared to the degenerate electron gas. Therefore,
we expect that the structure of a WD can be modeled as an isothermal core covered by
non-degenerate surface layers which isolates the degenerate core from the outer space
[e.g., 86].

To exploit the above image, let us introduce a simple approach to describe the en-
ergy transfer mechanism in the outer layers of a white dwarf. The main simplification
consists in attributing the outermost layers as the region responsible by the thermal
regulation of the white dwarf and the core responsible for the mechanical regulation of
the stellar structure, i.e., the core is in a hydrostatic equilibrium and the outer layers is
in a stationary state of radiative energy transfer. The outer layer region starts where the
degenerate matter becomes non-degenerate (ideal gas) matter. The thermal gradient
and the hydrostatic equilibrium are maintained by

dT
dr

= − 3
4ac

κρ

T3
Lr

4πr2 (5.1)
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and
dP
dr

= −GMr

r2 ρ, (5.2)

where Mr =
∫ r

0 ρ4πr2dr and Lr =
∫ r

0 ε4πr2dr. Dividing one equation by the other, we
can write

dP
dT

=
16πacG

3
1
κ

(
Mr

M

)(
L
Lr

)
M
L

T3 (5.3)

where M and L are respectively the mass and luminosity of the star. This equation
can be integrated with the hypothesis that the outer layers are too thin to contribute to
the mass, i.e., Mr ≈ M and there is no energy generation (ε = 0) in these layers, i.e.,
Lr ≈ L. By supposition, the material here is a non-degenerate and fully ionized gas, so
we can use the ideal gas EoS and the Kramers opacity, κ = κ0ρT−3.5. With this we have

ρ2 =

(
2

8.5
4ac
3

4πGM
κ0L

µ

NAkB

)
T6.5, (5.4)

integrating the Eq.(5.3) from P = 0 when T = 0. The Eq.(5.4) is a well-known result, as
can be seen in Shapiro & Teukolsky’s book [146].

Using the Eq.(5.4), which is valid for any r inside the outer layer, we can eliminate
ρ from Eq.(5.1) and integrate this equation from an effective radius (region where the
photons decouple from surface) where the temperature is the effective temperature to
the external radius of the WD where the temperature is zero, we get

Teff =

(
1

4.25
µ

NAkB

)
GM

R

(
R

Reff
− 1
)

. (5.5)

It is reasonable to assume that the effective radius can be related with the Chan-
drasekhar radius, Reff = ξRch(M), with ξ ∼ 1, since the effective radius should be
very close to the core surface. Then

Teff = (588,862 K)µ

(
M

M�

)(
R

R⊕

)−1 [( R
ξRch(M)

)
− 1
]

, (5.6)

where µ and ξ are parameters to be determined. For simplicity we further use the
analytical approximated expression for the radius of ideal white dwarfs Rch(M) given
by (1.14) with Mch given by (1.15), and µe is the mean molecular weight per electron.

The Eq.(5.6) determines the effective temperatures of the white dwarf stars as a
function of their masses and their radii. This relation is semi-empirical because the
correction parameters µ and ξ are fitted by data, but it is physically based on the model
of transport phenomena in the outer layers of the white dwarf stars.
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5.1.1 Data Set and Procedure

Using the data from the Sloan Digital Sky Survey (SDSS) Data Release 7, Klein-
man et al. [87] reported 42,154 spectroscopically confirmed white dwarf stars. From
the 14,120 clean DAs classified by the spectra, we use the 2,216 stars with S/N ≥ 15
and Teff ≥ 13,000 K. Of the 923 stars which they classified as clean DBs, we use the 140
stars with S/N ≥ 15 and Teff ≥16,000 K.

The masses of the identified clean DA and DB stars are calculated from the effec-
tive temperature Teff and surface gravity g values obtained by spectra. These rela-
tions are based on full evolutionary calculation of hydrogen-rich DA white dwarfs and
hydrogen-deficient DB white dwarfs, as discussed in that paper. These evolutionary
sequences constitute a complete and homogeneous grid of white dwarf models that
captures the core features of progenitor evolution, in particular the internal chemical
structures expected in the different types of white dwarf stars.

Therefore we will not consider the data uncertainties to fit the parameters µ and
ξ, assuming that such cannot be divided in systematical uncertainties from the stellar
evolution simulations, and observational uncertainties coming from the spectra. Of
course, this procedure must be revised in the future when the systematical uncertain-
ties were recognized.

Then, to adjust the parameters µ and ξ we choose a narrow range of masses around
a mean value M with a width of 0.001M� sufficient to determine the parameters for a
single value of mass, because white dwarf stars with same mass must evolve similarly.

5.1.2 DA white dwarfs

For the hydrogen-rich DA white dwarfs, the main behavior of the coefficients µ(M)

and ξ(M) can be fitted by the simplest forms

µ(M) =


0.48(0.02) M/M� < 0.448

4.2(0.2) M
M� − 1.4(0.1) 0.448 ≤ M/M� ≤ 0.503

0.78(0.01) M
M� + 0.32(0.01) M/M� > 0.503

(5.7)

and
ξ(M) = 0.984(0.002)− 0.021(0.003)

M
M�

, (5.8)

according with the Figure 5.1, and the uncertainties are represented in the parentheses.
A transition from a pure hydrogen composition for a hydrogen-helium mixture in

the outer layers is presented by the parameter µ(M) in the top panel of Fig.5.1. This
outer layer composition transition is marked by an core composition transition. In
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Figure 5.1: Parameters µ and ξ as a function of mass for DA-WD. The top
panel shows two references for µ as dotted lines, a pure ionized He gas and a
pure ionized H gas. In the bottom panel we represent the case where Reff =
Rch as dotted line.

fact, WD with mass below 0.452 M� are helium-core white dwarf stars [4] and WD
with mass above 0.452 M� are carbon-oxygen white dwarf stars [2].

The Figure 5.2 illustrates the radius-effective temperature of DA-WD with different
masses using the Eq.(5.6) and the parameters µ(M) and ξ(M) given by Eqs.(5.7) and
(5.8) for several values of WD masses (blue lines). The orange circles represent the
correspondent data for these mass values. The light gray circles are the available data
for DA-WD in the SDSS-DR7. Our analytic lines are not displayed for all data but there
is a excellent agreement between the semi-empirical relation and the DA-WD data for
masses above 0.4 M�. Bellow this mass value, the parameters cannot be adjusted
because the low statistics of the data.

5.1.3 DB white dwarfs

For the hydrogen-deficient DB white dwarfs, the main behavior of the coefficients
µ(M) and ξ(M) can be fitted by the simplest forms

µ(M) = 1.25(0.03)− 0.59(0.05) M
M� , (5.9)
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Figure 5.2: Semi-empirical radius-effective temperature relation for DA-WD
with different masses. The orange circles represent some values of mass and
the blue lines are their correspondent fits. The light gray circles are the avail-
able data for DA-WD from the SDSS-DR7.

ξ(M) = 0.92(0.03) + 0.02(0.05) M
M� , (5.10)

according with the Figure 5.3.

For hydrogen-deficient white dwarf stars with stellar mass values from 0.515 to
0.870 M� [3] there is not core composition transition, and consequently the parameter
µ(M) varies slowly in this range of mass values.

Alike the case of DA-WD, the Figure 5.4 illustrates the radius-effective temperature
of DB-WD with different masses using the Eq.(5.6) and the parameters µ(M) and ξ(M)

given in this section. The red circles represent some mass values for which the semi-
empirical relation is calculated, represented by the green lines. The light gray circles
are the available data for DB-WD in the SDSS-DR7. There is again a good agreement
between the semi-empirical relation and the DB-WD data despite the low statistics.
Note that the very isolated point for M = 0.3M� is stay also well on our curve.

5.2 Semi-Empirical Mass-Radius Relation

The mass-radius relation is a fundamental ingredient to understand the physics of
white dwarfs. The first mass-radius relation given by [55] assumed a zero temperature
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fully degenerate core. Finite temperature corrections to C and O nuclear material and
the non-degenerate outer layers of He and H were included by Althaus et al. [5]. Re-
cently, Holberg et al. [63] constrain the degenerate mass-radius relation with the obser-
vations, but there is a doubt about the favored models to estimate the mass and radius
of WD, using "thick" H envelopes or "thin" H envelopes. Therefore, the mass-radius
relation of white dwarfs is not greatly constrained by observations.

Our constraining relation Eq.(5.6) can be inverted to give

R = ξRch(M)

[
1− 1

µ

(
Teff

T0

)(
M

M�

)−1(ξRch(M)

R⊕

)]−1

, (5.11)

which provides a simple analytical mass-radius relation of white dwarfs, with T0 =

588,862 K. The knowledge about the parameters µ and ξ are the only physical ingredi-
ents to be added from the observations.

For DA-WD we can use the parameters µ and ξ found in Section 5.1.2. The Figure
5.5 represents this mass-radius relation of DA-WD with different effective tempera-
tures. The data are represented in narrow ranges of effective temperature with width
of 1000 K, symbolized as the orange circles. The blue lines are the correspondent mass-
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Figure 5.4: Semi-empirical radius-effective temperature relation for DB-WD
with different masses. The red circles represent some values of mass and the
green lines are their correspondent fits. The light gray circles are the available
data for DB-WD from the SDSS-DR7.

radius relation obtained from Eq.(5.6), where T4 = T/(104 K). The Chandrasekhar
mass-radius relation for CO ideal white dwarf is represented for comparison. We can
note an ideal white dwarf behavior to white dwarf with mass above 1 M�. This be-
havior comes from the denominator in Eq.(5.11) when the temperature parcel becomes
smaller than the Chandrasekhar radius parcel. A mass-radius relation for DB white
dwarfs can be obtained similarly, getting the parameters of Section 5.1.3, and the result
is presented in Figure 5.6.

A recent paper from Tremblay et al. [163] reports a sample of white dwarf paral-
laxes, including 4 directly observed DA-WD and other wide binaries WD. This data
set can be combined with spectroscopic atmospheric parameters, as effective tempera-
ture and surface gravity, to study the mass-radius relationship.

Using the data from that paper, we can reproduce the estimated masses and radii
from the Gaia-DR1 and compare with our semi-empirical mass-radius relation, as il-
lustrated in Figure 5.7. The purple solid circles are the directly observed DA-WD, also
identified in Table 5.3, and the yellow open circles are the wide binaries DA-WD. Our
semi-empirical mass-radius relation is represented as the blue lines for different effec-
tive temperatures. Since our mass-radius relation is obtained from the SDSS-DR7 and
agreed very well with the directly observed DA-WD from Gaia, we suggest that the
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wide binaries data be reviewed in future analysis.

There is a observed sample of eclipsing white-dwarfs where the derivation of both
mass and radius is independent. In Table 5.1, we calculate the radius R (the last col-
umn) for the given Teff and M = Meclipse which is to be compared to the observed
radius Reclipse (the fourth column) . We find that our semi-empirical mass-radius rela-
tion is in good agreement with observations.

5.2.1 Effective Temperature Limit

The star radius R, from Eq.(5.11), becomes infinite when the effective temperature
is equal to the limiting value, Tlim, given by

Tlim(M)

T0
= µ

(
M

M�

)(
ξRch(M)

R⊕

)−1

. (5.12)

Using this definition for the limiting temperature, the radius of the hot white dwarf
is written as R ∝ (Tlim − T)−1.

In Fig.5.8, we show Tlim as function of mass M. The light gray circles are the ef-
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Table 5.1: The estimated radii for the observed DA white dwarf stars from
Eclipsing Binaries.

Name Teff (K) Meclipse (M�) Reclipse (R⊕) R (R⊕) Ref
CSS 41177A 22,500(60) 0.378(0.023) 2.425(0.045) 2.64(0.21) 1

NN Ser 63,000(3000) 0.535(0.012) 2.27(0.02) 2.31(0.12) 2
SDSS J0857+0342 37,400(400) 0.514(0.049) 2.69(0.09) 2.11(0.48) 3
SDSS J1212-0123 17,710(40) 0.439(0.050) 1.83(0.01) 2.07(0.28) 4

GK Vir 50,000(670) 0.562(0.014) 1.85(0.03) 1.91(0.07) 4
QS Vir 14,220(350) 0.781(0.013) 1.165(0.008) 1.14(0.02) 5

V471 Tau 34,500(1000) 0.840(0.050) 1.17(0.08) 1.10(0.08) 6
References. 1) Bours et al. [19], 2) Parsons et al. [129], 3) Parsons et al. [130], 4) Parsons
et al. [131], 5) Parsons et al. [128], 6) O’Brien et al. [124].

fective temperature distribution as a function of mass. The blue region represents the
forbidden region for the effective temperature of hot DA-WD. In fact, there is not a sin-
gle point in the bulk of the region, which indicates that this temperature limit exhibits
a physical behavior of data, although be a mathematical limit of our model.

5.3 Central Temperature and Nuclear Ignition in White

Dwarfs

Although astronomical observables are stellar atmospheric quantities, the stellar
interior quantities are of great importance to astrophysics. For instance, the central
temperature and the central density determine the chemical evolution of the star and
its nuclear energy generation.

The relation between effective temperature and central temperature is given by
Koester [89] in the approximated form

T4
eff
g

= 2.05× 10−10T2.56
c (5.13)

where g is the surface gravity. This relation was obtained by fitting the data from
simulations and give us a good estimate of the central temperature inside WD stars.

We can estimate the central temperature of WD-data from SDSS-DR7, using their
radii, mass and effective temperature. In Figure 5.9 we represent these data as the gray
circles.

Using our semi-empirical mass-radius relation, we can obtain the central temper-
ature of WD using just their effective temperatures and their masses, since their radii
can be calculated with this relation. The central temperature of DA-WDs as a function
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The dotted line is our effective temperature threshold for hot white dwarfs.

of their effective temperature is plotted for different mass values in Figure 5.9, as blue
lines.

The ignition of the nuclear material inside the white dwarf is determined by the
balance between nuclear energy generation rate and local heat losses. We consider
the case where the heat losses are mainly caused by neutrino emission, which is ap-
propriate in white dwarfs, e.g., for modeling Type Ia supernova events Ref.[60]. The
ignition temperature for the material depends on the central density of the star. We use
the fitting formula for ignition temperature for carbon and oxygen fusions as a func-
tion of mass density, the Eq.(A.1) in Ref.[135]. The central densities for white dwarfs
with different masses are calculated using the hydrostatic equilibrium equation with
the EoS of degenerate electrons, i.e., hydrostatic equilibrium for ideal white dwarfs.
This assumption is enough a posteriori because the temperature corrections to the EoS
are important just above the ignition temperature for oxygen. In Figure 5.9 we repre-
sent both carbon and oxygen ignition lines as the dashed lines, using the Eq.(5.13) to
estimate the correspondent effective temperature.

In Table 5.2 we present six DA-WD with central temperature (the last column)
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Table 5.2: The highest estimated central temperature determined for the ob-
served DA white dwarf stars from SDSS-DR7.

Name M (M�) R (R⊕) Teff (K) log Tc (K)
200646.50-124410.9 0.539(0.017) 3.959(0.546) 99,018(2529) 8.84(0.05)
091442.70+041455.9 0.538(0.037) 3.445(0.692) 85,714(5102) 8.70(0.08)
113303.70+290223.0 0.466(0.012) 4.375(0.577) 73,149(2867) 8.69(0.05)
102624.05+091554.8 0.573(0.021) 2.957(0.335) 92,989(3088) 8.68(0.05)
224653.73-094834.5 0.553(0.019) 3.077(0.313) 87,805(2600) 8.67(0.04)
080403.06+083030.8 0.526(0.041) 3.406(0.799) 82,219(6036) 8.67(0.10)

above 99% of the carbon ignition temperature, represented by the orange circles in
Figure 5.9. The star 200646.50-124410.9 is a special case because it is the only one WD
above the carbon ignition line. The fact that this WD did not become a supernova can
be understood by its internal composition, i.e., if there is more oxygen then carbon
in its core, we expect no ignition inside this WD. We suggest that more careful obser-
vations and more detailed simulations must be directed to the modeling of this WD
star.

5.4 Estimating Masses of Hot White Dwarfs

One of the great achievements in white dwarf research has been the capacity to
measure the effective temperatures and surface gravities. In particular, the spectro-
scopic technique developed by Bergeron et al. [14] for analyzing the Balmer line of hy-
drogen in (DA) white dwarfs has become the standard method for measuring the ef-
fective temperature and surface gravity of these stars which represent 80% of the white
dwarf population. In addition to being infrequent than their hydrogen-line DA coun-
terparts, the hotter DB stars are characterized by an optical spectrum where the neu-
tral helium transitions exhibit little sensitivity to effective temperature, as discussed
by Bergeron et al. in [15]. The mass-radius relation is fundamental to compute white
dwarf masses from these accurate measurements.

Using our semi-empirical mass-radius relation, Eq.(5.11), we can obtain the surface
gravity g as a function of the mass M and the effective temperature Teff of the white
dwarf star according

g(M, Teff) =
GM

R(M, Teff)2 , (5.14)

which we can be numerically invert to obtain the mass of the WD as a function of Teff

and log g.

As a test case, the most recent measurements of Sirius B from [62] can be used to
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Table 5.3: The estimated masses for the directly observed DA white dwarf
stars from the Gaia-DR1.

Name Teff (K) log g (cm/s2) MGaia (M�) M (M�)
0232+035 66,950(1440) 7.40(0.07) 0.490(0.113) 0.518(0.013)
1314+293 56,800(1250) 7.89(0.07) 0.516(0.096) 0.644(0.028)
1647+591 12,510(200) 8.34(0.05) 0.860(0.103) 0.807(0.031)
2117+539 14,680(240) 7.91(0.05) 0.573(0.071) 0.561(0.025)

determine its mass. Sirius B is a hydrogen-rich DA-WD whose the effective temper-
ature is 24,790(100) K and the surface gravity is log g = 8.57(0.06). Then, using the
Eq.(5.14), we can obtain the mass value of M = 0.960(0.035) M�. This result is close
to the refined estimates of the mass M = 1.034(0.026) M� using other method of mea-
surement, as the Hipparcos parallax method.

Another example would be the PG0948+534 reported by [139] as currently one
of the hottest DA white dwarf stars. The authors were able to measure the Teff and
the log g for this WD, finding Teff = 110,000 K and log g = 7.58. For the case of
PG0948+534, we find the mass value of M = 0.640 M�, that corroborates the hypoth-
esis of DA hot white dwarfs with mass between 0.5− 0.7 M� are the hottest observed
DA stars, as can be seen in Figure 5.9.

The best test is to compare our mass estimates with direct mass measurements by
independent methods, such as those presented in Gaia-DR1 at Ref. [163]. As discussed
in the Section 5.2, the data of directly observed DA-WD are in better agreement with
our model than the data of wide binaries WD. In Table 5.3, we estimate the mass (the
last column) using the atmospheric measurements of effective temperature and surface
gravity for these WD, by Eq.(5.14), and compare with the observed mass MGaia (the
fourth column).

5.5 Discussion and Conclusion

Introducing a very simple model for the outer layer of hot WDs we analyzed the
SDSS-DR7 and derived a simple, analytic semi-phenomenological relation among ef-
fective temperature, mass and radius of hot white dwarfs, the Eq.(5.6). The introduced
parameters µ and ξ capture the relation among those quantities provided by full evolu-
tionary models, i.e., they are associated with the processes of stellar evolution of white
dwarfs.

From this relation, we observe that there are two essential differences between
hydrogen-rich DA white dwarf and hydrogen-deficient DB white dwarf: their outer
layer composition and their effective temperature range.
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As discussed by Sion et al. in [151], the DA-WD are much easier to classify because
the Balmer lines of hydrogen across a wide range of effective temperature Teff, from
4,000 up to 120,000 K and higher, whereas DB-WD exhibit He I lines but with a lower
effective temperature range, from 12,000 to 45,000 K. Confirming the different effective
temperature ranges for DA and DB.

The difference in the outer layer composition was presented by the parameter µ

of both DA and DB, and it indicates that the parameter is closely related to the mean
molecular weight of this region, whose the information give us clues about the chemi-
cal composition of the material.

The parameter ξ must be related to the Rosseland optical-depth mentioned in Ref.[12]
and it depends on the chemical composition of the material, due to the opacity of the
material. The fact of ξ . 1 shows that the region responsible for the photon emis-
sion is essentially in the border of the core described by the degenerate electron gas,
suggesting that a small portion of this surface is melted into the outer layer.

Our result permits us to obtain a mass-radius relation, the Eq.(5.11), and estimates
of radii for WDs for known mass and temperature with other methods. Furthermore,
our formula exhibits a mathematical limit to the effective temperature, and curiously
there is not a single white dwarf star in the bulk of the forbidden region imposed by
this limit. A further study to understand the existence of such a limiting temperature
is required.

The central temperature can be evaluated using the relation between effective tem-
perature and surface gravity derived from Koester et al. [89] using numerical models
of WD. The data from SDSS-DR7 present six DA-WD with central temperatures very
close to the carbon ignition temperature. There is only one DA-WD with central tem-
perature above the ignition temperature. If our analytic expression reflects the physical
systematics correctly, we may think of the possibility that the core of this WD is com-
posed by oxygen instead of carbon. Numerical simulations and future observations
are required for the better understanding whether such WD is a possible Type Ia su-
pernova progenitor.

The mass-radius relation obtained in this work allows us to obtain mass estimates
from atmospheric measurements of effective temperature and surface gravity. We use
this method to estimate masses of the well known Sirius B and other DA-WD from the
recent Gaia-DR1. Although they are distinct methods, our mass evaluations are in good
accordance with the masses measured by Gaia, considering their uncertainties. This
result confirm our relation, Eq.(5.6), as a great constraining for effective temperature,
mass and radius of hot white dwarfs.

All these results are compiled and discussed in a submitted paper [152].
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Chapter 6

Delayed Thermalization in
Thermonuclear Supernovae

In every branch of knowledge the progress is propor-
tional to the amount of facts on which to build, and
therefore to the facility of obtaining data.

– J. C. Maxwell (1831-1879)

We know that the outburst in Type Ia supernovae are caused by nuclear burning in
microscopically thin layers either conductively as subsonic deflagrations or by shock
compression as supersonic detonations [e.g., 95, Ch. XIV]. These burning fronts are hy-
drodynamically unstable to linear spatial perturbations, but they can be stabilized by
forming nonlinear cellular structure or become fully turbulent that produce the flame
surface growth, increasing the total burning rate [174]. Neither flames nor detonations
can be resolved in explosion simulations on stellar scales and therefore must be repre-
sented by numerical models [e.g, 60].

In fact, phenomenologically adjusted models based on these mode of burning front
propagation were able to fit most of the observational data remarkably well. However,
most of these earlier models computed the dynamical evolution of the white dwarf
from the time of ignition through disruption assuming spherical symmetry on all scales
and intrinsically non-spherical effects such as convective mixing and transport were
included in some parametrized form. Moreover, since it is well know that the laminar
speed of a deflagration front propagating in the deep interior of a dense white dwarf
is by far insufficient to lead to the desired explosion and provide at least 0.5M� of
radioactive 56Ni to power the light curve [e.g., 162]. So, an acceleration of the front due
to some unknown mechanism had to be assumed to achieve the necessary detonation
[59].
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On the other hand, it has also been realized rather early that the matter behind the
deflagration front suffers hydrodynamic instabilities, including the Rayleigh-Taylor in-
stability, and Woosley [169] introduced the concept of a fractal dimension of the flame
surface into supernova models in order to account for these effects. But as before, the
models did not resolve numerically all relevant length scales.

6.1 Retardation Effects in Hydrodynamical Calculations

Though in the past several years hydrodynamical simulations have been extended
to two and three dimensions, the most recent and state-of-art 3D hydrodynamical cal-
culations are beyond the computational capacity to reconstruct the details of micro-
scopic fluid motion. The typical fluid elements of order 1 km3 are assumed in ther-
modynamic equilibrium, where the matter is homogeneous and there are no gradients
of thermodynamic quantities. However, in a highly unstable regime the fluid motion
may be infinitely complicated on scales smaller than the fluid element, and these com-
plex fluid motion will thermalize on finite timescales. Therefore, the thermodynamic
equilibrium within the fluid element is a good approximation only when the timescale
of thermalization is negligible compared to the other relevant timescale the hydrody-
namic timescale.

In the one-dimensional modeling of the hydrodynamical evolution many degrees
of freedom are embedded within a shell. However, from the preceding considerations
it is natural to expect that there exist transient processes such as convective mixing,
vortices, collective motion and other instabilities on smaller and smaller scales which
must delay the thermalization of the burning matter, and that retardation will effect
the propagation of the flame or detonation. One then expects that the thermalization
of the burning matter may not be instantaneous on the relevant timescales, and that
such retardation effects will influence the propagation of the burning fronts. Thus, the
heat generated by these microscopically irreversible process will take some time to be
equilibrated as heat in the matter.

In this case, the entropy balance equation should be modified as

T
dS
dt

= [Q̇]− L, (6.1)

where the original heat term, accounting for the dissipative work rate and the nuclear
energy generation, given by

Q̇ = −q
dV
dt

+ εM (6.2)
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and the delayed dissipative-reactive source term described by

[Q̇] =
∫ t

−∞
G(t, t′)Q̇(t′)dt′, (6.3)

where G(t, t′) denotes the probability that the heat dissipated by turbulence or gener-
ated by nuclear reactions at time t′ will appear as heat at time t. This retardation effect
will be more important if the size of the hydrodynamical cell is extremely macroscopic,
as is the case in present supernova calculations.

The specified form of G(t, t′) depends on the dynamical details of how the micro-
scopic hydrodynamic motion turns to heat, which we have no knowledge currently.
However, we expect that it should satisfy certain general conditions:

(1) be normalized , i.e.
∫ ∞
−∞ G(t, t′)dt′ = 1;

(2) be a function of t− t′, i.e., the retardation process is Markovian;

(3) should be zero for large t− t′;

(4) the principal effect can be represented by a single relaxation time τ.

The two most simple possibilities for G(t, t′) that satisfy the above conditions are

G(t, t′) = δ(t− t′ − τ), (6.4)

or
G(t, t′) =

1
τ

e−(t−t′)/τ. (6.5)

From a practical point of view, the possibility (6.5) is more convenient, since the
integral expression for [Q̇] in Eq.(6.3) can be transformed into a differential equation as

d[Q̇]

dt
=

1
τ

(
Q̇− [Q̇]

)
. (6.6)

which is similar to the Maxwell-Cattaneo equations (2.50) for the dissipative currents.

The Figure 6.1 illustrates the delayed thermalization for a simple heat distribution.
The original heat distribution Q̇ is a Gaussian peaked at 0.4 s and width of 0.03 s,
represented as the blue dashed line. The orange and yellow lines represent the delayed
distributions [Q̇] with τ = 100 ms and τ = 200 ms, respectively. Therefore, we can
note that as the delay time increases the maximum of the distribution decreases and
the distribution itself becomes larger. All these distributions return the same deposited
energy after a long time.
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Figure 6.1: The generated heat as a function of time. The original distribution
is a Gaussian centered at 0.4 s with width 0.03 s, represented as the dashed
blue line. The orange and yellow lines represent the delayed distributions
with τ = 100 ms and τ = 200 ms, respectively.

6.2 sub-Chandrasekhar Supernovae

The calculations were performed for several models with different values of the
delay parameter τ. The progenitor for all these models is a sub-Chandrasekhar-mass
WD star (1.08 M�) composed of equal mass fractions of 12C and 16O (X = 0.5) with
0.08 M� He-rich material accreted, totalizing 1.16 M� described by N = 116 shells
with 0.01 M� mass each one. This progenitor is motivated by the case A model
from Nomoto et al. [118] with the helium matter accreted at a constant accretion rate
of dM/dt = 3 × 10−8M�yr−1, resulting in a helium burning at near surface shell
Mr = 1.13 M�, i.e., the shell with 1.13 M� inside.

Our initial condition is assumed to be in hydrostatic equilibrium, with the described
helium burning producing a large overpressure as seen from the spike in the initial
pressure distribution in Figure 6.4. The nuclear energy released at this shell results in
a steep temperature peak of T = 3× 109 K in that region.

6.2.1 Effects on the shock wave propagration

The nuclear burning leads to an increase of temperature and the nuclear energy
rate ε because of high electron degeneracy. The heat transport becomes negligible as
compared with ε, and the heat is retained in the burning region. As a consequence the
temperature increases rapidly at a time scale of τnuc = cpT/ε, where cp is the specific
heat at constant pressure. When τnuc becomes shorter than the dynamical scale τdyn =

(24πGρ)−1/2, the temperature runaway becomes a deflagration and the temperature
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at τnuc = τdyn is the deflagration temperature. The deflagration releases the nuclear
energy rapidly and yields an overpressure, i.e., a shock front is formed.

The off-center ignition, in our initial condition, results in an overpressure which
forms double shock waves which propagate both outward and inward. Initially, the
shock waves are as strong as Psh/P0 ∼ 800 for the inward and Psh/P0 ∼ 40 for the
outward at the adjacent shells. This overpressure created by the heat of the burning
products is sufficiently high to form a hydrodynamical shock wave. The resulting
shock wave ignites the fuel by compressional heating in a self-sustaining combustion
front, a detonation wave. The double detonations move supersonically and do not al-
low the unburned medium to expand before it is burned. Their speed depends mainly
on the ratio of the total amount of energy released per unit mass over the internal en-
ergy, i.e., ε/u0. The delayed thermalization can affect this ratio during the detonation
wave propagation leading to a shock wave damping.

The outgoing wave is so strong that the shock temperature Tsh reaches 2× 109 K
which much higher than the deflagration temperature of helium, Tdef(He). The helium
is then deflagrated into NSE composition, and consequently the shock grows into a
helium detonation wave (He-DW) which propagates outward. The inward shock wave
initially propagates through the helium zone of 0.05 M� just below the ignited shell.
It forms a helium detonation wave which propagates inward. The precursor shock
wave then reaches the CO core and is also strong enough to deflagrate the carbon,
Tsh > Tdef(C), and a carbon detonation wave (C-DW) forms and propagates inward
while incinerating the material into NSE composition.

The double detonation waves propagate self-consistently, i.e., double precursor
shock waves are strong enough to keep Tsh higher than both Tdef(He) and Tdef(C).
The propagation of the double detonation waves and the accompanying changes in
the radial coordinates are shown in Figure 6.2. The profiles of temperature, pressure
and radial velocity are represented in Figure 6.4 for the inward C-DW without the
delayed thermalization effects.

When we introduce the time delay τ the evolution of the radial coordinates changes
calmly. For τ = 2 ms (Figure 6.3), the shock wave propagates inward slower than for
τ = 0 ms (Figure 6.2). However, this shock wave remains strong enough to maintain
the carbon detonation inward incinerating whole star. The outgoing shock wave (SW)
is represented both in Figure 6.2 and Figure 6.3, and it is also slower in the case with
delay τ = 2 ms than the case without delay.

The double detonation waves do not always form. With τ = 4 ms the helium flash
near the surface is also explosive, with the precursor shock as strong as Psh/P0 ∼ 600,
but smaller than that in case with τ = 0. The resultant postshock temperature is
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Figure 6.2: Propagation of the double detonation waves (dashed lines) and the
corresponding changes of the radial coordinates of the Lagrangian shells (solid
lines) as a function of time without time delay (τ = 0 ms). The blue lines
represent the helium accreted shells and the orange lines represent the CO
core.



95

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

He-DW

CO-DW

SW

lo
g
R

(e
ar
th

ra
d
iu
s)

time (seconds)

Figure 6.3: Propagation of the double detonation waves (dashed lines) and the
corresponding changes of the radial coordinates of the Lagrangian shells (solid
lines) as a function of time for time delay τ = 2 ms. The color scale is the same
as Figure 6.2.

Tsh ∼ 4× 109 is higher than Tdef(He) = 1.3× 108 K giving origin to a helium deto-
nation wave forms which propagates outward while incinerating helium matter. On
the other hand, Tsh decreases as the shock wave propagates inward due to the delayed
thermalization. Then, Tsh becomes smaller than Tdef(C) = 1.3× 109 K and the detona-
tion ceases. Although the shock wave propagates inward into the CO core, it becomes
too weak at M(r) = 1.0 M� to form an inward carbon detonation wave, as can be seen
in Figure 6.5. In fact, such a wave does not induce the inward carbon detonation be-
cause of the pressure damping due to the delayed thermalization. This damping effect
can be seen in pressure profiles and the consequent decrease in temperature as showed
in Figure 6.6.

We should remark, however, that for τ > 4 ms the combustion becomes restricted
just to the helium layers of helium. In that case, the total energy of the CO core is still
negative, so that is remains at rest. There is no supernova in these cases.

6.2.2 Effects on the energetics of explosion and nucleosynthesis

The double detonation nucleosynthesis is quite simple. The inward carbon detona-
tion incinerates all materials in the CO core into NSE composition, i.e., in our simula-
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Figure 6.5: Propagation of the double detonation waves (dashed lines) and the
corresponding changes of the radial coordinates of the Lagrangian shells (solid
lines) as a function of time for time delay τ = 4 ms. The red circle represents
the Lagrangian shell M(r) = 1.0 M� where the detonation ceases. The shock
wave (light dotted line) which propagates inward into the CO core is not able
to induce a carbon detonation. The color scale is the same as Figure 6.2.
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Figure 6.7: The final mass fractions of the seven isotopes for different values
of time delay parameter τ.

tions 4He, 28Si and 56Ni. The electron capture is too slow such that neutronization in
NSE composition is negligible. Therefore, the NSE composition becomes 56Ni as the
temperature decreases due to expansion. The outward helium detonation als inciner-
ates most of the initial helium zone into NSE composition which becomes 56Ni in later
stages due to the low density. The He-CO transition layer is the appropriate region to
produce the intermediate-mass elements as 28Si, because there the α-capture reaction
proceeds partially and may synthesize these IME in those low density layers. This pat-
tern of nucleosynthesis is retrieved by our numerical calculations until τ = 3 ms, as
represented by Figure 6.7.

There is an abrupt fall in 56Ni production for τ > 3 ms. This is because, as discussed
earlier, the inward shock wave is not strong enough to induce a carbon detonation
which results in no carbon combustion at CO core, as represented in Figure 6.7 for the
τ = 4 ms case. This failure in the nickel-group element nucleosynthesis is presented in
Table 6.1.

The main observable affected by the variation in [56Ni] mass is the peak luminosity,
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Table 6.1: Nucleosynthetic yields of selected species and nickel radial velocity
for different values of the time delay parameter τ.

τ M[4He] M[12C] M[16O] M[20Ne] M[24Mg] M[28Si] M[56Ni] v56Ni
(ms) (M�) (M�) (M�) (M�) (M�) (M�) (M�) (km/s)

0 0.030 0.006 0.029 5.62(-6) 0.011 0.206 0.886 1.7(4)
1.0 0.025 0.006 0.015 6.87(-6) 2.36(-4) 0.226 0.896 1.7(4)
2.0 0.020 0.006 0.032 4.63(-6) 0.010 0.220 0.878 1.6(4)
3.0 0.021 0.006 0.059 6.11(-6) 0.029 0.216 0.835 1.6(4)
3.5 0.015 0.461 0.535 4.93(-4) 0.044 0.049 0.056 1.5(4)
4.0 0.015 0.480 0.536 0.001 0.034 0.040 0.054 1.5(4)
4.5 0.015 0.495 0.542 0.001 0.028 0.037 0.042 1.5(4)
5.0 0.015 0.506 0.541 0.001 0.022 0.036 0.039 1.5(4)

Notes: Numbers in parenthesis correspond to powers of ten. v56Ni is the velocity of the
ejecta shell that bounds 99% of the total 56Ni mass.

Table 6.2: Energetics of explosion for different values of the time delay param-
eter τ.

τ Binding Energy Nuclear Energy Explosion Energy
(ms) Ebin (erg) Enuc (erg) Eexp (erg)

0 2.4× 1050 1.8× 1051 1.6× 1051

1.0 2.4× 1050 1.9× 1051 1.7× 1051

2.0 2.4× 1050 1.8× 1051 1.6× 1051

3.0 2.4× 1050 1.7× 1051 1.5× 1051

3.5 2.4× 1050 2.9× 1050 5.2× 1049

4.0 2.4× 1050 2.6× 1050 1.6× 1049

4.5 2.4× 1050 2.3× 1050 · · ·
5.0 2.4× 1050 2.2× 1050 · · ·

10.0 2.4× 1050 1.8× 1050 · · ·

which correlates with the explosion energy. This energy is essentially the nuclear en-
ergy released during the explosion minus the initial binding energy. Therefore, for the
same initial condition, the greater is the nickel amount produced by the explosion, the
greater is the nuclear energy released, and consequently the greater is the explosion
energy. The Table 6.2 presents the binding energy Ebin, the nuclear energy Enuc and the
explosion energy Eexp for models with different values of delay parameter τ.

All these results can be compiled into a simple plot which relates the nuclear energy
released with the amount of silicon- and nickel-group elements synthesized during
the WD combustion when the delayed thermalization is considered, represented by
different single time delay parameter τ as in Figure 6.8.
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Figure 6.8: The mass fractions of silicon-group elements (blue solid line) and
nickel-group elements (red solid line) and the nuclear energy released during
the explosion (orange dashed line) versus the delay time parameter τ. The dot-
ted line represents the binding energy.

6.3 Discussion and Conclusion

The time delay in our delayed thermalization model results from assuming that
the transformation of microscopic kinetic and nuclear energies into thermal energy is
not instantaneous on timescales relevant for the supernova explosion. We account the
associated physical process as a gradual transfer of irreversible entropy to collective
degrees of freedom that act on smaller scales. Since most hydrodynamical calculation
appeal to dividing the system into a set of interacting macroscopic fluid elements, these
retardation effects should be included no matter how small the size of these fluid ele-
ments are in practical calculations, because at some stage of the thermalization process
they will be larger than some of the collective modes present. The necessary concern
which was not addressed here is the size of such retardation effects in physically re-
alistic systems. However, the schematic demonstration in the present work that these
retardation effects may strongly influence the hydrodynamical evolution and their ob-
servables indicates that serious consideration should be given to such effects in the
description of thermonuclear supernovae.

The fundamental indication of the retardation effects in thermonuclear supernovae
is the variation in the 56Ni masses produced during the detonation of the carbon-
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oxygen material. This nucleosynthesis variation introduces diversity in ejecta that have
other endorsement as velocity ejecta, kinetic energy, and explosion energy. It is thus
no surprise that this variation in the nickel-group mass [56Ni] and in the intermediate-
mass group [28Si] provide the main contrast in model results. From τ = 0 to 3 ms, the
velocity of the ejecta shell that bounds 99% of the total 56Ni mass is almost the same
∼ 17000 km s−1, while the mass of synthesized 56Ni is approximately ∼ 0.88M�. This
amount of 56Ni is large enough to provide energy input for the light curve of SN I. On
the other hand, for τ > 3 ms the synthesized mass of 56Ni is below ∼ 0.06 M� and it is
not sufficient for light curves, since the minimum mass of 56Ni required to power the
SN I light curves was estimated to be ∼ 0.2 M� [e.g., 167].

We can associate this sharp transition with the characteristic timescale for hydrody-
namic processes, the Courant-Friedrich timescale related to the propagation of distur-
bations with the sound velocity inside the fluid element, given by τCFL = δR/cs ≈ 4
ms. Being this value accurately correlated with the timescale associated with the tran-
sition from a explosion by double detonation in a sub-Chandrasekhar WD to a single
outward He-detonation, as presented by Figure 6.8. This coupling of timescales should
be investigated more carefully.

We also know that in the present calculation the artificial viscosity can somehow
be overestimated due to the small number of shells N = 116, which eventually damps
the propagation of shock waves. We have performed a calculation for N = 1160 shells
without delay, and found that important differences appear when compared to the our
case shown in Figure 6.2. In particular, the final configuration for the last few shells
becomes unbound early, showing that the number of shells used here is not sufficient
to describe the detailed behavior of the external shells. However, the present model is
intended to be schematic.

Besides that, it is not the purpose of the present work to claim that the introduction
of retardation effects is able to solve the apparent discussion about the deflagration-to-
detonation transition of the one-dimensional calculations of realistic supernova mod-
els. Such calculations should not only increase the number of shells, but also include
many more ingredients, such as the interaction of shock waves and turbulent flow.
Furthermore, it appears that two- and three-dimensional treatments may lead to quite
different behavior of the time evolution of the system. The point that we would like
to stress is that the relative importance of those retardation effects should remain the
same in these multidimensional calculations.

Of course, our result are resumed for only one initial condition. The fact that we
do not know whether some SNe Ia come from sub-Chandrasekhar or Chandrasekhar
mass explosions is still confusing. We expect reproduce this calculations for others
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initial conditions currently discussed as possible progenitors.
Lastly, differentiating between these various models can be improved by detailed

radiative transfer simulations to match the observed evolution of SN Ia light curves
and spectra form early to late times.

All these results will be presented and discussed in a future paper [153].
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Chapter 7

Epilogue

Every atom in your body came from a star that ex-
ploded. And, the atoms in your left hand probably
came from a different star than your right hand. It
really is the most poetic thing I know about physics:
You are all stardust. You couldn’t be here if stars
hadn’t exploded, because the elements - the carbon,
nitrogen, oxygen, iron, all the things that matter for
evolution and for life - weren’t created at the begin-
ning of time. They were created in the nuclear fur-
naces of stars, and the only way for them to get into
your body is if those stars were kind enough to ex-
plode.... The stars died so that you could be here
today.

– Lawrence Krauss (1954-)

The non-equilibrium thermodynamic is still the object of study of many scientists of
diverse areas of knowledge. The near-equilibrium and the linear treatment discussed
here is the essence of the development of human knowledge. We start with the equilib-
rium thermodynamic and we search the neighborhood of these states of equilibrium
like a detective looking for clues to a crime. However, although much has been learned,
there is a long road to deal with far-from-equilibrium phenomena.

We have learned that for most of his life, the WD stars are in stationary states with
their radiative luminosity coming from the thermal energy stored in the plasma inside
it. Their radii and consequently their effective temperature remain in constant change
throughout their entire life. The degenerate matter keeps the WD in hydrostatic equi-
librium while the ions in the outer layers keep the star hot. The photons cannot cross
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the outermost layers without colliding many times, and the consequence of this block
is an isothermal core surrounding by a tiny but relentless atmosphere. The observed
radius, mass and effective temperature are direct quantities of this atmosphere and
they provide us with information about its internal composition.

But not everything is so calm during the life of white dwarfs. When they are in
binary systems, they can receive a lot of pure helium mass and start a supernova.
These glorious thermonuclear explosions may be triggered by the carbon fusion and
produce a good amount of the nickel present in the universe. Explosions, of coure,
are not quite states of matter. They release a lot of energy in a tiny region of the star,
and the resulting shock waves propagate with ultrasound velocities. Thus, the non-
equilibrium thermodynamic can be necessary to describe these complex and transient
phenomena.
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Appendix A

Semi-degenerate Equation of State

As presented by Cox & Giuli [166] (where many useful tables and others references
can be found) the general expressions for electron density, pressure, internal energy can
be write, in terms of dimensionless variables η = µ/kBT and the relativistic parameter
β = kBT/mec2, in parameterized form

nele =
8π
√

2
h3 m3

e c3β3/2 [F1/2(η, β) + βF3/2(η, β)] (A.1)

pele =
16π
√

2
3h3 m4

e c5β5/2 [F3/2(η, β) + (1/2)βF5/2(η, β)] (A.2)

uele =
8π
√

2
h3

m4
e c5

ρ
β5/2 [F3/2(η, β) + βF5/2(η, β)] (A.3)

where nele, pele and uele are the electrons number density, pressure and energy density,
respectively. The functions Fk are the generalized Fermi-Dirac integrals defined by

Fk(η, β) =
∫ ∞

0

xk(1 + 0.5βx)1/2

exp (−η + x) + 1
dx (A.4)

A.1 Evaluation of the Fk(η, β)

In this section we present expansions for the two cases of, respectively, large degen-
eracy (η � 1) and small degeneracy (η ≤ 0), both for arbitrary values of β. Next, we
present a numerical method sufficient to evaluate the integrals for arbitrary values of
β, which are necessary for the case of partial degeneracy (arbitrary η).
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A.1.1 Large degeneracy (η � 1), arbitrarily relativistic (arbitrary β)

For η � 1 we may obtain asymptotic expansions for Fk(η, β) by application of
Sommerfeld’s Lemma. The following proof is taken from [28].

Lemma A.1.1 (Sommerfeld’s Lemma). If ϕ(u) is an sufficiently regular function and van-
ishes at u = 0, thus the following asymptotic expansion is accurate to terms of order e−u0 =

Λ−1, and it can be written as∫ ∞

0

du
(1/Λ)eu + 1

dϕ(u)
du

= ϕ(u0) + 2
[
c2ϕ′′(u0) + c4ϕ(4)(u0) + . . .

]
, (A.5)

with u0 = log Λ and c2, c4, . . . , are numeric coefficients defined by

cν = 1− 1
2ν

+
1
3ν
− 1

4ν
+ · · · = (1− 21−ν)ζ(ν) (A.6)

where ζ(ν) is the Riemann zeta function.

Proof. We can separate the integral into two regions around u0, as

∫ ∞

0

du
(1/Λ)eu + 1

dϕ(u)
du

=
∫ u0

0

du
(1/Λ)eu + 1

dϕ(u)
du

+
∫ ∞

u0

du
(1/Λ)eu + 1

dϕ(u)
du

=
∫ u0

0

dϕ(u)
du

+
∫ u0

0

(
1

(1/Λ)eu + 1
− 1
)

dϕ(u)
du

du +
∫ ∞

u0

du
(1/Λ)eu + 1

dϕ(u)
du

= ϕ(u0)−
∫ u0

0

du
1 + Λe−u

dϕ(u)
du

+
∫ ∞

u0

du
(1/Λ)eu + 1

dϕ(u)
du

. (A.7)

Defining a new variable for each one integral, u = u0(1− t) for the first one, and
u = u0(1 + t) for the other one, we have

∫ ∞

0

du
(1/Λ)eu + 1

dϕ(u)
du

= ϕ(u0)− u0

∫ 1

0

ϕ′[u0(1− t)]
1 + eu0t dt + u0

∫ ∞

0

ϕ′[u0(1 + t)]
1 + eu0t dt.

(A.8)

Extending the limit of the first integral to infinity, we add an error term of order
e−u0 , which is beyond our accuracy. Then

∫ ∞

0

du
(1/Λ)eu + 1

dϕ(u)
du

' ϕ(u0) + u0

∫ ∞

0

ϕ′[u0(1 + t)]− ϕ′[u0(1− t)]
1 + eu0t dt, (A.9)
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and expanding ϕ′ around u0 in the form

ϕ′[u0(1 + t)] = ϕ′(u0) + ϕ′′(u0)(u0t) +
1
2!

ϕ′′′(u0).(u0t)2 + . . . , (A.10)

and

ϕ′[u0(1− t)] = ϕ′(u0) + ϕ′′(u0)(−u0t) +
1
2!

ϕ′′′(u0)(−u0t)2 + . . . , (A.11)

we can write the (A.9) as

∫ ∞

0

du
(1/Λ)eu + 1

dϕ(u)
du

' ϕ(u0) + 2 ∑
ν=2,4,6,...

uν
0 ϕ(ν)(u0)

(ν− 1)!

∫ ∞

0

tν−1

1 + eu0t dt, (A.12)

where the odd derivative terms cancel themselves. In other hand, we have

∫ ∞

0

tν−1

1 + eu0t dt =
∫ ∞

0
tν−1(e−u0t − e−2u0t + e−3u0t − . . . ) dt, (A.13)

with each term independently resulting in

(−1)n−1
∫ ∞

0
tν−1e−nu0t dt =

(−1)n−1(ν− 1)!
uν

0nν
, (A.14)

and we get ∫ ∞

0

tν−1

1 + eu0t dt =
(ν− 1)!

uν
0

(
1− 1

2ν
+

1
3ν
− 1

4ν
+ . . .

)
. (A.15)

Defining cν =
(

1− 1
2ν +

1
3ν − 1

4ν + . . .
)

1, then we can write

∫ ∞

0

du
(1/Λ)eu + 1

dϕ(u)
du

= ϕ(u0) + 2
[
c2ϕ′′(u0) + c4ϕ(4)(u0) + . . .

]
, (A.16)

which proves the lemma.

We express the asymptotic formulae for Fk(η, β) in terms of η and x = p0/mec,
remembering that p0 is the momentum value for which the occupation number q =

1/2. The corresponding value of kinetic energy is ε0/mec2 = ηβ, so that

1 + x2 = (1 + ηβ)2 (A.17)

1We may note that

c2 =
π2

12
, c4 =

7π4

720
, c6 =

31π6

30240
, . . .
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from the relativistic dispersion relation. In this context (η � 1), x may be regarded as
a relativity parameter: x � 1 implies the N.R. regime, and x � 1 the E.R. regime. For
given x, the value of β is determined by (A.17).

The relevant asymptotic expansions for ne, Pe, and ue for large degeneracy (η � 1)
and x arbitrary, with the existence of e± pairs neglected, are then

nele =
8πm3

e c3

3h3 x3

{
1 + 2

[
c2

1
η2

3(1 + 2x2)(
√

1 + x2 − 1)2

x4 + c4
1
η4

9(
√

1 + x2 − 1)4

x8

+ c6
1
η6

45(7 + 6x2)(
√

1 + x2 − 1)6

x12 + . . .

]}
, (A.18)

pele =
πm4

e c5

3h3 f (x)

{
1 + 2

[
c2

1
η2

24x
√

1 + x2(
√

1 + x2 − 1)2

f (x)

+ c4
1
η4

24(2x2 − 1)
√

1 + x2(
√

1 + x2 − 1)4

x3 f (x)

− c6
1
η6

360
√

1 + x2(
√

1 + x2 − 1)6

x7 f (x)
+ . . .

]}
(A.19)

uele =
πm4

e c5

3h3 g(x)

1 + 2

c2
1
η2

24
(
−1 +

√
1 + x2 + x2(−2 + 3

√
1 + x2)

)
(
√

1 + x2 − 1)2

xg(x)

+ c4
1
η4

72
(
−1 +

√
1 + x2 + x2

√
1 + x2(−1 + 2x2)

)
(
√

1 + x2 − 1)4

x5g(x)

+ c6
1
η6

360
(

x2(−6 +
√

1 + x2) + 7(−1 +
√

1 + x2)
)
(
√

1 + x2 − 1)6

x9g(x)
+ . . .


(A.20)

where
f (x) ≡ x(2x2 − 3)

√
1 + x2 + 3 sinh−1 x (A.21)

and
g(x) ≡ 8x3(

√
1 + x2 − 1)− f (x) (A.22)

are the functions defined by Chandrasekhar [28, Ch. X].

The phase of complete degeneracy can be obtained from these general expansions
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by taking η → +∞. So we have

nele(∞, 0) =
8πm3

e c3

3h3 x3 (A.23)

pele(∞, 0) =
πm4

e c5

3h3 f (x) (A.24)

uele(∞, 0) =
πm4

e c5

3h3 g(x), (A.25)

and their mutual relations are simplified as

pele

nelekBT
=

1
8

f (x)
βx3 =

η

8
f (x)

x3
(√

1 + x2 − 1
) =

(2/5)η x → 0 (N.R.)

(1/4)η x → ∞ (E.R.)
. (A.26)

and
pele

uele
=

f (x)
g(x)

=

(2/3) x → 0 (N.R.)

(1/3) x → ∞ (E.R.)
.

A.1.2 Small degeneracy (η ≤ 0), arbitrarily relativistic (arbitrary β)

The generalized Fermi-Dirac functions may be written as

Fk(η, β) = eη
∫ ∞

0

xke−x(1 + 0.5βx)1/2

1 + eη−x dx. (A.27)

For η < 0, eη−x < 1 for all x ≥ 0, and the factor (1 + eη−x)−1 can be expanded in a
convergent power series in eη−x. Expanding and integrating term by term, we obtain

Fk(η, β) = eη
∞

∑
r=0

(−1)rerη
∫ ∞

0
xke−(r+1)x(1 + (1/2)βx)1/2dx, (A.28)

which also converges at η = 0. With the change of variable

cosh θ ≡ 1 + βx, (A.29)

the integral

Fk(η, β) = eη+ 1
β

1√
2

1
βk+1

∞

∑
r=0

(−1)rer
(

η+ 1
β

) ∫ ∞

0
(cosh θ − 1)k− 1

2 e−(r+1) cosh θ/β sinh θ dθ,

(A.30)
can be associate with the Bessel functions of the type Kν(z), expressed in terms of the
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integrals

Kν(z) =
∫ ∞

0
e−z cosh t cosh νt dt, (A.31)

making use of the recursion relations

Kν−1(z)− Kν+1(z) = −
2ν

z
Kν(z). (A.32)

Then, we have for η ≤ 0 and arbitrary β, in the case e± pairs are being neglected,

nele =
8πm3

e c3

h3 βe
η+

1
β

∞

∑
r=0

(−1)rer
(

η+ 1
β

)
1

r + 1
K2

(
r + 1

β

)
, (A.33)

pele =
8πm4

e c5

h3 β2e
η+

1
β

∞

∑
r=0

(−1)rer
(

η+ 1
β

)
1

(r + 1)2 K2

(
r + 1

β

)
, (A.34)

uele =
8πm4

e c5

h3 βe
η+

1
β

∞

∑
r=0

(−1)rer
(

η+ 1
β

)

·
{

1
r + 1

K1

(
r + 1

β

)
+

[
3β

(r + 1)2 −
1

r + 1

]
K2

(
r + 1

β

)}
. (A.35)

The completely non-degenerate case for arbitrary β is obtained from the general ex-
pansions for η ≤ 0 by taking η → −∞, retaining only the first terms of the expansions.
Thus, we have

nele =
8πm3

e c3

h3 βe
η+

1
β K2(1/β), (A.36)

pele =
8πm4

e c5

h3 β2e
η+

1
β K2(1/β)

= nekBT, (A.37)

uele =
8πm4

e c5

h3 βe
η+

1
β [K1(1/β) + (3β− 1)K2(1/β)]

= Pe

[
K1(1/β)

βK2(1/β)
+ 3− 1

β

]
. (A.38)

Therefore, the perfect gas law holds in the case of a completely non-degenerate
gas composed of non-interacting (or weakly interacting) particles, for any relativistic
regime.

In the completely non-degenerate case (η → −∞), for the non-relativistic regime
(β→ 0) and relativistic regime (β→ ∞) we can make use of the asymptotic expansions
for Kν(z).
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A.1.3 Arbitrarily degenerate and arbitrarily relativistic

In this case, it is reasonable to compute the generalized Fermi-Dirac functions (??)
by direct integration, using change of variables to obtain a rapidly convergent quadra-
ture. We use the approach from Numerical Recipes [138].

They do the usual transformation x = exp (t− e−t), which maneuver the singu-
larity at x = 0 and the exponential decay to large x. For η & 15, the integral can be
split into two regions, [0, η] and [η, η + 60], with the contribution beyond η + 60 being
neglected. Each of these integrals being calculated with trapezoidal integration rules.

A.2 Helmholtz Equation of State

Direct evaluation of the electron-positron physics in the EOS is usually accurate
enough and thermodynamically consistent, but it is often overly time consuming within
the context of a two- or three-dimensional model. Tabular equations of state for the
electron-positron plasma are usually efficient enough for multidimensional models,
but bring about their own set of difficulties with regard to accuracy and consistency.
These difficulties include the need for accurate interpolations, the need for a temperature-
density grid which is dense enough to provide sufficient resolution of the thermody-
namic variables, and the need for the interpolated values to be thermodynamically
consistent with each other (i.e., satisfy the Maxwell relations). In many circumstances
the number of points in the temperature-density grid can always be made large enough
to keep the accuracy and level of thermodynamic inconsistency at an acceptable level,
although in some cases the memory or cache requirement

In this section we present the idea from Timmes & Swesty [161] for an electron-
positron equation of state based on table interpolation of the Helmholtz free energy.

A.2.1 Quintic Hermite Interpolation

A quintic Hermite interpolator is a numeric function that is piecewise-defined by
polynomial functions where each piece is a quintic-degree polynomial specified in Her-
mite form, i.e., by its values and ist first and second derivatives at the end points of
the corresponding domain interval. These piecewise numeric functions are sometimes
called splines.

Hermite splines are typically used for interpolation of numeric data specified at
some values x1, x2, . . . , xn, to obtain a smooth continuous function. The data should
consist of the desired function value and derivatives at each xi. The Hermite formula
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is applied to each interval interval [xi, xi+1] independently, being defined by

H5(x) = A + Bx + Cx2 + Dx3, (A.39)

with the following constraints of the original data f (xi) and its derivatives at the bor-
ders of the interval

H5(xi) = fi, H5(xi+1) = fi+1,

H′5(xi) =
d f
dx

∣∣∣∣
i
, H′5(xi+1) =

d f
dx

∣∣∣∣
i+1

,

H′′5 (xi) =
d2 f
dx2

∣∣∣∣
i
, H′′5 (xi+1) =

d2 f
dx2

∣∣∣∣
i+1

, (A.40)

necessary to determine the coefficients A, B, C and D. The three polynomials resulting
of these constraints are the quintic Hermite basis functions

h0(z) =1− 10z3 + 15z4 − 6z5, (A.41)

h1(z) =z− 6z3 + 8z4 − 3z5, (A.42)

h2(z) =1
2(z

2 − 3z3 + 3z4 − z5), (A.43)

and the interpolating quintic Hermite polynomial is

H5(x) = fih0(x̃) + fi+1h0(1− x̃) +
d f
dx

∣∣∣∣
i
(xi+1 − xi)h1(x̃)− d f

dx

∣∣∣∣
i+1

(xi+1 − xi)h1(1− x̃)

+
d2 f
dx2

∣∣∣∣
i
(xi+1 − xi)

2h2(x̃) +
d2 f
dx2

∣∣∣∣
i+1

(xi+1 − xi)
2h2(1− x̃). (A.44)

where
x̃ =

x− xi

xi+1 − xi
, (A.45)

To use the quintic Hermite interpolant one must tabulate the function f (x) and its
first d f /dx and second d2 f /dx2 derivatives at the grid points. In return for this in-
vestment, the values of the function and its first and second derivative are reproduced
exactly at the grid points. In addition, the values of the function and the derivatives
change continuously as the interpolating point moves from one grid cell to the next.
Note the derivative of the Hermite interpolant function is given by the derivative of
the basis functions in (A.44).
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A.2.2 Bi-quintic Hermite Interpolation

The one-dimensional quintic polynomial can be extended to two dimensions by
interpolating each of the parcel of (A.44) in the second dimension.

H5(x, y) =

fi,jh0(x̃)h0(ỹ) + fi+1,jh0(1− x̃)h0(ỹ) + fi,j+1h0(x̃)h0(1− ỹ) + fi+1,j+1h0(1− x̃)h0(1− ỹ)

+
∂ f
∂x

∣∣∣∣
i,j
(xi+1 − xi)h1(x̃)h0(ỹ)−

∂ f
∂x

∣∣∣∣
i+1,j

(xi+1 − xi)h1(1− x̃)h0(ỹ)

+
∂ f
∂x

∣∣∣∣
i,j+1

(xi+1 − xi)h1(x̃)h0(1− ỹ)− ∂ f
∂x

∣∣∣∣
i+1,j+1

(xi+1 − xi)h1(1− x̃)h0(1− ỹ)

+
∂ f
∂y

∣∣∣∣
i,j
(yi+1 − yi)h0(x̃)h1(ỹ)−

∂ f
∂y

∣∣∣∣
i+1,j

(yi+1 − yi)h0(1− x̃)h1(ỹ)

+
∂ f
∂y

∣∣∣∣
i,j+1

(yi+1 − yi)h0(x̃)h1(1− ỹ)− ∂ f
∂y

∣∣∣∣
i+1,j+1

(yi+1 − yi)h0(1− x̃)h1(1− ỹ)

+
∂2 f

∂x∂y

∣∣∣∣
i,j
(xi+1 − xi)(yi+1 − yi)h1(x̃)h1(ỹ)−

∂2 f
∂x∂y

∣∣∣∣
i+1,j

(xi+1 − xi)(yi+1 − yi)h1(1− x̃)h1(ỹ)

− ∂2 f
∂x∂y

∣∣∣∣
i,j+1

(xi+1 − xi)(yi+1 − yi)h1(x̃)h1(1− ỹ)

+
∂2 f

∂x∂y

∣∣∣∣
i+1,j+1

(xi+1 − xi)(yi+1 − yi)h1(1− x̃)h1(1− ỹ)

+
∂2 f
∂x2

∣∣∣∣
i,j
(xi+1 − xi)

2h2(x̃)h0(ỹ) +
∂2 f
∂x2

∣∣∣∣
i+1,j

(xi+1 − xi)
2h2(1− x̃)h0(ỹ)

+
∂2 f
∂x2

∣∣∣∣
i,j+1

(xi+1 − xi)
2h2(x̃)h0(1− ỹ) +

∂2 f
∂x2

∣∣∣∣
i+1,j+1

(xi+1 − xi)
2h2(1− x̃)h0(1− ỹ)

+
∂2 f
∂y2

∣∣∣∣
i,j
(yi+1 − yi)

2h0(x̃)h2(ỹ) +
∂2 f
∂y2
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i+1,j

(yi+1 − yi)
2h0(1− x̃)h2(ỹ)

+
∂2 f
∂y2
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i,j+1

(yi+1 − yi)
2h0(x̃)h2(1− ỹ) +

∂2 f
∂y2
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i+1,j+1

(yi+1 − yi)
2h0(1− x̃)h2(1− ỹ)

+
∂3 f

∂x2∂y

∣∣∣∣
i,j
(xi+1 − xi)

2(yi+1 − yi)h2(x̃)h1(ỹ)

+
∂3 f

∂x2∂y
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i+1,j

(xi+1 − xi)
2(yi+1 − yi)h2(1− x̃)h1(ỹ)

− ∂3 f
∂x2∂y

∣∣∣∣
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(xi+1 − xi)
2(yi+1 − yi)h2(x̃)h1(1− ỹ)

− ∂3 f
∂x2∂y

∣∣∣∣
i+1,j+1

(xi+1 − xi)
2(yi+1 − yi)h2(1− x̃)h1(1− ỹ)
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+
∂3 f

∂x∂y2

∣∣∣∣
i,j
(xi+1 − xi)(yi+1 − yi)

2h1(x̃)h2(ỹ)

− ∂3 f
∂x∂y2

∣∣∣∣
i+1,j

(xi+1 − xi)(yi+1 − yi)
2h1(1− x̃)h2(ỹ)

+
∂3 f

∂x∂y2

∣∣∣∣
i,j+1

(xi+1 − xi)(yi+1 − yi)
2h1(x̃)h2(1− ỹ)

− ∂3 f
∂x∂y2

∣∣∣∣
i+1,j+1

(xi+1 − xi)(yi+1 − yi)
2h1(1− x̃)h2(1− ỹ)

+
∂4 f

∂x2∂y2

∣∣∣∣
i,j
(xi+1 − xi)

2(yi+1 − yi)
2h2(x̃)h2(ỹ)

+
∂4 f

∂x2∂y2

∣∣∣∣
i+1,j

(xi+1 − xi)
2(yi+1 − yi)

2h2(1− x̃)h2(ỹ)

+
∂4 f

∂x2∂y2

∣∣∣∣
i,j+1

(xi+1 − xi)
2(yi+1 − yi)

2h2(x̃)h2(1− ỹ)

+
∂4 f

∂x2∂y2

∣∣∣∣
i+1,j+1

(xi+1 − xi)
2(yi+1 − yi)

2h2(1− x̃)h2(1− ỹ) (A.46)

where
x̃ =

x− xi

xi+1 − xi
and ỹ =

y− yi

yi+1 − yi
. (A.47)

A.2.3 Helmholtz free energy interpolation

To use the biquintic Hermite interpolant for a Helmholtz free energy based equation
of state, one must tabulate the Helmholtz free energy per unit mass f and its eight par-
tial derivatives ∂ f /∂T, ∂ f /∂ρ, ∂2 f /∂ρ∂T, ∂2 f /∂ρ2, ∂2 f /∂T2, ∂3 f /∂ρ2∂T, ∂3 f /∂ρ∂T2,
∂4 f /∂ρ2∂T2, as a function of density and temperature.

In return for this nontrivial investment, the values of the function, first partial
derivatives, and second partial derivatives are reproduced exactly at the grid points,
changing continuously as the interpolating point moves from one grid cell to the next.
With (A.46) as the interpolating function, the Helmholtz free energy is given by a
biquintic polynomial. The pressure, entropy, and internal energy are given by a bi-
quartic polynomials, and the derivatives of the pressure, entropy, and internal energy
are given by bicubic polynomials. Note the partial derivatives of biquintic interpolant
are determined by the derivatives of the three basis functions given by (A.43).

Fortunately, five of the eight partial derivatives needed to use the biquintic inter-
polant can usually be formed from the EoS based upon the free energy relation

f = u− Ts (A.48)



137

where u is the internal energy per unit mass and s the entropy per unit mass. From the
first law of thermodynamics, the total differential of this free energy is

d f = −sdT +
p
ρ2 dρ, (A.49)

and its partial derivatives are

∂ f
∂T

∣∣∣∣
ρ

= −s,
∂ f
∂ρ

∣∣∣∣
T
=

p
ρ2

∂2 f
∂T2

∣∣∣∣
ρ

= − ∂s
∂T

∣∣∣∣
ρ

,
∂2 f
∂ρ2

∣∣∣∣
T
=

1
ρ2

∂p
∂ρ

∣∣∣∣
T
− 2p

ρ3

∂2 f
∂T∂ρ

= − ∂s
∂ρ

∣∣∣∣
T
=

∂2 f
∂ρ∂T

=
1
ρ2

∂p
∂T

∣∣∣∣
ρ

. (A.50)

The third and fourth partial derivative are not available directly from the thermo-
dynamic relations. However, these third and fourth partial derivatives can be obtained
from techniques which produce accurate numerical derivatives. We use the centered
finite difference method, so that

∂3 f
∂T2∂ρ

= {[ f (ρ + δρ, T − δT)− 2 f (ρ + δρ, T) + f (ρ + δρ, T + δT)]

−[ f (ρ− δρ, T − δT)− 2 f (ρ− δρ, T) + f (ρ− δρ, T + δT)]} /(2δρδT2) +O(δρ2δT2)

(A.51)

∂3 f
∂ρ2∂T

= {[ f (ρ− δρ, T + δT − 2 f (ρ, T + δT) + f (ρ + δρ, T + δT)]

−[ f (ρ− δρ, T − δT)− 2 f (ρ, T − δT) + f (ρ + δρ, T − δT)]} /(2δTδρ2) +O(δρ2δT2)

(A.52)

∂4 f
∂ρ2∂T2 = {[ f (ρ− δρ, T − δT)− 2 f (ρ− δρ, T) + f (ρ− δρ, T + δT)]

−2[ f (ρ, T − δT)− 2 f (ρ, T) + f (ρ, T + δT)]

+[ f (ρ + δρ, T − δT)− 2 f (ρ + δρ, T) + f (ρ + δρ, T + δT)]} /(δT2δρ2) +O(δρ3δT2)

(A.53)

which returns the exact derivatives when δρ → 0 and δT → 0. The omission of these
three terms should allow the second partial derivatives of the interpolant to exhibit
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spurious oscillations as one moves through the center of a cell, mainly where pair-
production dominate the thermodynamic quantities.

The table generated for the EoS interpolation stores the electron-positron Helmholtz
free energy and the needed eight partial derivatives to 16 digits accuracy. The limits of
the table were chosen to be log (ρ/µe) = [−6; 11] and log T = [4; 11] in cgs units. This
range of 17 orders of magnitude in density and 7 orders of magnitude in temperature
is large enough to our purpose of thermonuclear supernovae calculations.

The other contributions to the EoS from photons or ions are not included in the
table. Of course, these components are very simple - a black-body radiation and an
ideal gas, respectively - and we do not need read-off a table to do simple calculations
like these.

A.3 Thermodynamic Quantities

Once a table of the Helmholtz free energy and eight of its partial derivatives has
been constructed, the thermodynamic quantities and their derivatives are given by

p = ρ2 ∂ f
∂ρ

,
∂p
∂T

∣∣∣∣
ρ

= ρ2 ∂2 f
∂ρ∂T

,
∂p
∂ρ

∣∣∣∣
T
= ρ2 ∂2 f

∂ρ2 + 2ρ
∂ f
∂ρ

,

s = − ∂ f
∂T

,
∂s
∂T

∣∣∣∣
ρ

= − ∂2 f
∂T2 ,

∂s
∂ρ

∣∣∣∣
T
= − ∂2 f

∂ρ∂T
,

u = f + Ts,
∂u
∂T

∣∣∣∣
ρ

= T
∂s
∂T

,
∂u
∂ρ

∣∣∣∣
T
=

∂ f
∂ρ

+ T
∂s
∂ρ

. (A.54)

As suggest by Timmes et al. [159] we investigate if the thermodynamic relations

P = ρ2 ∂u
∂ρ

+ T
∂p
∂T

(A.55)

∂u
∂T

= T
∂s
∂T

(A.56)

∂s
∂ρ

= − 1
ρ2

∂p
∂T

(A.57)

are satisfied. An equation of state is thermodynamically consistent if all these three
identities are true.
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Figure A.1: Pressure as a function of density for different temperatures and a
pure 12C composition.
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Figure A.2: Internal energy per unit mass as a function of density for different
temperatures and a pure 12C composition.
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Figure A.3: Entropy per unit mass as a function of density for different tem-
peratures and a pure 12C composition.
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Figure A.4: Partial derivative of the pressure with respect to the density for
different constant values of temperature.
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Figure A.5: Partial derivative of the pressure with respect to the temperature
for different constant values of density.
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Figure A.6: Partial derivative of the specific internal energy with respect to
the density for different constant values of temperature
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Figure A.7: Partial derivative of the specific internal energy with respect to
the temperature for different constant values of density.
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Figure A.9: Numerical deviation of the thermodynamic relation ∂u/∂T =
T∂s/∂T.
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Figure A.10: Numerical deviation of the thermodynamic relation ∂s/∂ρ =
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